一种长文档摘要的抽取-抽象混合方法

Si Huang, Rui Wang, Qing Xie, Lin Li, Yongjian Liu
{"title":"一种长文档摘要的抽取-抽象混合方法","authors":"Si Huang, Rui Wang, Qing Xie, Lin Li, Yongjian Liu","doi":"10.1109/BESC48373.2019.8962979","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a hybrid model of extractive and abstractive methods to tackle the long document automatic summarization task. The model first trains an extractor to extract salient sentences from the original text. Next, these salient sentences are put together to get a condensed version of the original text. Then we use the abstractive model to rewrite the extracted sentences to get the final summary. In order to avoid the exposure bias, reinforcement training is used to optimize the proposed model. Experiments in NLPCC2017 Shared Task 3 show that our models achieve competitive performance. Additionally, the ROUGE score of our model exceeds the score of the state-of-the-art model in the original NLPCC2017 Shared Task 3, where a sentence summary is generated from each Chinese news article.","PeriodicalId":190867,"journal":{"name":"2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Extraction-Abstraction Hybrid Approach for Long Document Summarization\",\"authors\":\"Si Huang, Rui Wang, Qing Xie, Lin Li, Yongjian Liu\",\"doi\":\"10.1109/BESC48373.2019.8962979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a hybrid model of extractive and abstractive methods to tackle the long document automatic summarization task. The model first trains an extractor to extract salient sentences from the original text. Next, these salient sentences are put together to get a condensed version of the original text. Then we use the abstractive model to rewrite the extracted sentences to get the final summary. In order to avoid the exposure bias, reinforcement training is used to optimize the proposed model. Experiments in NLPCC2017 Shared Task 3 show that our models achieve competitive performance. Additionally, the ROUGE score of our model exceeds the score of the state-of-the-art model in the original NLPCC2017 Shared Task 3, where a sentence summary is generated from each Chinese news article.\",\"PeriodicalId\":190867,\"journal\":{\"name\":\"2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BESC48373.2019.8962979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC48373.2019.8962979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种抽取和抽象的混合模型来解决长文档的自动摘要问题。该模型首先训练提取器从原始文本中提取重要句子。接下来,把这些重要的句子放在一起,得到原文的浓缩版。然后使用抽象模型对提取的句子进行重写,得到最终的摘要。为了避免暴露偏差,采用强化训练对模型进行优化。在NLPCC2017共享任务3中的实验表明,我们的模型达到了具有竞争力的性能。此外,我们模型的ROUGE分数超过了原始NLPCC2017共享任务3中最先进的模型的分数,其中每篇中文新闻文章生成一个句子摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Extraction-Abstraction Hybrid Approach for Long Document Summarization
In this paper, we propose a hybrid model of extractive and abstractive methods to tackle the long document automatic summarization task. The model first trains an extractor to extract salient sentences from the original text. Next, these salient sentences are put together to get a condensed version of the original text. Then we use the abstractive model to rewrite the extracted sentences to get the final summary. In order to avoid the exposure bias, reinforcement training is used to optimize the proposed model. Experiments in NLPCC2017 Shared Task 3 show that our models achieve competitive performance. Additionally, the ROUGE score of our model exceeds the score of the state-of-the-art model in the original NLPCC2017 Shared Task 3, where a sentence summary is generated from each Chinese news article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信