结合2D/3D点和线跟踪的鲁棒相机姿态估计

F. Ababsa, M. Mallem
{"title":"结合2D/3D点和线跟踪的鲁棒相机姿态估计","authors":"F. Ababsa, M. Mallem","doi":"10.1109/ISIE.2008.4676964","DOIUrl":null,"url":null,"abstract":"This paper presents a new robust camera pose estimation algorithm based on real-time 3D model tracking. We propose to combine point and line features in order to handle partial occlusion and increase the accuracy. A non linear optimization method is used to estimate the camera pose parameters. Robustness is obtained by integrating a M-estimator into the optimisation process. Furthermore, a crucial condition for pose estimation problem is the consistency of 2D/3D correspondences between image and model features. We propose here to implement a natural point and line robust trackers in order to find corresponding features in the sequence images. Our method has been evaluated on several video sequences. The results show the robustness and the efficiency of our algorithm compared to other tracking approaches.","PeriodicalId":262939,"journal":{"name":"2008 IEEE International Symposium on Industrial Electronics","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Robust camera pose estimation combining 2D/3D points and lines tracking\",\"authors\":\"F. Ababsa, M. Mallem\",\"doi\":\"10.1109/ISIE.2008.4676964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new robust camera pose estimation algorithm based on real-time 3D model tracking. We propose to combine point and line features in order to handle partial occlusion and increase the accuracy. A non linear optimization method is used to estimate the camera pose parameters. Robustness is obtained by integrating a M-estimator into the optimisation process. Furthermore, a crucial condition for pose estimation problem is the consistency of 2D/3D correspondences between image and model features. We propose here to implement a natural point and line robust trackers in order to find corresponding features in the sequence images. Our method has been evaluated on several video sequences. The results show the robustness and the efficiency of our algorithm compared to other tracking approaches.\",\"PeriodicalId\":262939,\"journal\":{\"name\":\"2008 IEEE International Symposium on Industrial Electronics\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Industrial Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2008.4676964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2008.4676964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种基于实时三维模型跟踪的鲁棒相机姿态估计算法。我们提出结合点和线的特征来处理部分遮挡,提高精度。采用非线性优化方法估计相机姿态参数。鲁棒性是通过将m估计量集成到优化过程中获得的。此外,姿态估计问题的关键条件是图像和模型特征之间的二维/三维对应关系的一致性。为了在序列图像中找到相应的特征,我们提出了一种自然的点和线鲁棒跟踪方法。我们的方法已经在几个视频序列上进行了评估。结果表明,与其他跟踪方法相比,该算法具有较好的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust camera pose estimation combining 2D/3D points and lines tracking
This paper presents a new robust camera pose estimation algorithm based on real-time 3D model tracking. We propose to combine point and line features in order to handle partial occlusion and increase the accuracy. A non linear optimization method is used to estimate the camera pose parameters. Robustness is obtained by integrating a M-estimator into the optimisation process. Furthermore, a crucial condition for pose estimation problem is the consistency of 2D/3D correspondences between image and model features. We propose here to implement a natural point and line robust trackers in order to find corresponding features in the sequence images. Our method has been evaluated on several video sequences. The results show the robustness and the efficiency of our algorithm compared to other tracking approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信