嵌入式并行微处理器性能预测的综合分析模型

M. Olivieri, M. Scarana
{"title":"嵌入式并行微处理器性能预测的综合分析模型","authors":"M. Olivieri, M. Scarana","doi":"10.1109/ICIT.2004.1490775","DOIUrl":null,"url":null,"abstract":"This paper presents an analytical model for the early performance prediction of VLSI microprocessor cores. The model involves a wide set of architecture parameters (including data on memory hierarchy data, branch prediction and pipeline organization) and instruction level parameters as well as statistical information obtained from an ad-hoc version of the SimpleScalar toolset. The model validation against cycle accurate simulation shows a very good fitting.","PeriodicalId":136064,"journal":{"name":"2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04.","volume":"314 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive analytical model for embedded parallel microprocessors performance prediction\",\"authors\":\"M. Olivieri, M. Scarana\",\"doi\":\"10.1109/ICIT.2004.1490775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an analytical model for the early performance prediction of VLSI microprocessor cores. The model involves a wide set of architecture parameters (including data on memory hierarchy data, branch prediction and pipeline organization) and instruction level parameters as well as statistical information obtained from an ad-hoc version of the SimpleScalar toolset. The model validation against cycle accurate simulation shows a very good fitting.\",\"PeriodicalId\":136064,\"journal\":{\"name\":\"2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04.\",\"volume\":\"314 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2004.1490775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2004.1490775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个用于超大规模集成电路微处理器内核早期性能预测的分析模型。该模型涉及一组广泛的体系结构参数(包括内存层次数据、分支预测和管道组织的数据)和指令级参数,以及从SimpleScalar工具集的特别版本获得的统计信息。通过周期精确仿真验证了模型的拟合效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive analytical model for embedded parallel microprocessors performance prediction
This paper presents an analytical model for the early performance prediction of VLSI microprocessor cores. The model involves a wide set of architecture parameters (including data on memory hierarchy data, branch prediction and pipeline organization) and instruction level parameters as well as statistical information obtained from an ad-hoc version of the SimpleScalar toolset. The model validation against cycle accurate simulation shows a very good fitting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信