功率循环下银烧结igbt模块可靠性的电-热-机械分析

R. Dudek, R. Doring, S. Rzepka, C. Ehrhardt, M. Gunther, M. Haag
{"title":"功率循环下银烧结igbt模块可靠性的电-热-机械分析","authors":"R. Dudek, R. Doring, S. Rzepka, C. Ehrhardt, M. Gunther, M. Haag","doi":"10.1109/EUROSIME.2015.7103139","DOIUrl":null,"url":null,"abstract":"New demands on the thermo-mechanical design of sintered silver interconnections emerge. Development of this inter-connection technology and both experimental and theoretical studies on their reliability were subjects of the project “PROPOWER”. The focus of this paper is on theoretical analysis of thermo-mechanical reliability risks of a project demonstrator, an insulated-gate bipolar transistor (IGBT) module, subjected to power cycling loadings. Coupled electro-thermal-mechanical analyses have been carried out using the finite element method (FEM). Introduction of a new interconnect material means at the same time introduction of a new constitutive behavior and new failure modes. As the material stiffness increases, the decoupling effect of compliant solder layers reduces and intrinsic mechanical stresses increase in the whole power stack. This leads on one hand to less low cycle fatigue in the interconnect, as plastic dissipation is reduced, but on the other hand to higher failure risks like brittle cracking and sub-critical crack growth. However, if early brittle failure can be avoided by appropriate designs, the new interconnection technology allows an increase in fatigue reliability of several hundred percent. Based on the complex theoretical framework simulation results are validated by testing in order to achieve trustworthy thermo-mechanical reliability predictions. Failures like chip metallization damage and the different damage mechanisms of the die bond if either solder or sinter silver is used are related to the different stress situations in the module.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"338 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Electro-thermo-mechanical analyses on silver sintered IGBT-module reliability in power cycling\",\"authors\":\"R. Dudek, R. Doring, S. Rzepka, C. Ehrhardt, M. Gunther, M. Haag\",\"doi\":\"10.1109/EUROSIME.2015.7103139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New demands on the thermo-mechanical design of sintered silver interconnections emerge. Development of this inter-connection technology and both experimental and theoretical studies on their reliability were subjects of the project “PROPOWER”. The focus of this paper is on theoretical analysis of thermo-mechanical reliability risks of a project demonstrator, an insulated-gate bipolar transistor (IGBT) module, subjected to power cycling loadings. Coupled electro-thermal-mechanical analyses have been carried out using the finite element method (FEM). Introduction of a new interconnect material means at the same time introduction of a new constitutive behavior and new failure modes. As the material stiffness increases, the decoupling effect of compliant solder layers reduces and intrinsic mechanical stresses increase in the whole power stack. This leads on one hand to less low cycle fatigue in the interconnect, as plastic dissipation is reduced, but on the other hand to higher failure risks like brittle cracking and sub-critical crack growth. However, if early brittle failure can be avoided by appropriate designs, the new interconnection technology allows an increase in fatigue reliability of several hundred percent. Based on the complex theoretical framework simulation results are validated by testing in order to achieve trustworthy thermo-mechanical reliability predictions. Failures like chip metallization damage and the different damage mechanisms of the die bond if either solder or sinter silver is used are related to the different stress situations in the module.\",\"PeriodicalId\":250897,\"journal\":{\"name\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"338 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2015.7103139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

对烧结银互连的热机械设计提出了新的要求。这种互连技术的发展及其可靠性的实验和理论研究是“PROPOWER”项目的主题。本文的重点是一个项目演示器,一个绝缘栅双极晶体管(IGBT)模块,在功率循环负载下的热机械可靠性风险的理论分析。采用有限元法进行了电-热-力耦合分析。引入一种新的互连材料意味着同时引入一种新的本构行为和新的破坏模式。随着材料刚度的增加,柔性焊料层的解耦效应减小,整个电源堆栈的固有机械应力增加。这一方面减少了互连体的塑性耗散,减少了低周疲劳,但另一方面也增加了脆性开裂和亚临界裂纹扩展等失效风险。然而,如果通过适当的设计可以避免早期脆性破坏,新的互连技术可以将疲劳可靠性提高几百倍。基于复杂的理论框架,通过试验验证了仿真结果,从而实现了可靠的热机械可靠性预测。如果使用焊料或烧结银,则芯片金属化损伤和模键的不同损伤机制等故障与模块中不同的应力情况有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electro-thermo-mechanical analyses on silver sintered IGBT-module reliability in power cycling
New demands on the thermo-mechanical design of sintered silver interconnections emerge. Development of this inter-connection technology and both experimental and theoretical studies on their reliability were subjects of the project “PROPOWER”. The focus of this paper is on theoretical analysis of thermo-mechanical reliability risks of a project demonstrator, an insulated-gate bipolar transistor (IGBT) module, subjected to power cycling loadings. Coupled electro-thermal-mechanical analyses have been carried out using the finite element method (FEM). Introduction of a new interconnect material means at the same time introduction of a new constitutive behavior and new failure modes. As the material stiffness increases, the decoupling effect of compliant solder layers reduces and intrinsic mechanical stresses increase in the whole power stack. This leads on one hand to less low cycle fatigue in the interconnect, as plastic dissipation is reduced, but on the other hand to higher failure risks like brittle cracking and sub-critical crack growth. However, if early brittle failure can be avoided by appropriate designs, the new interconnection technology allows an increase in fatigue reliability of several hundred percent. Based on the complex theoretical framework simulation results are validated by testing in order to achieve trustworthy thermo-mechanical reliability predictions. Failures like chip metallization damage and the different damage mechanisms of the die bond if either solder or sinter silver is used are related to the different stress situations in the module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信