可搜索对称加密的机械化安全性证明

Adam Petcher, Greg Morrisett
{"title":"可搜索对称加密的机械化安全性证明","authors":"Adam Petcher, Greg Morrisett","doi":"10.1109/CSF.2015.36","DOIUrl":null,"url":null,"abstract":"We present a mechanized proof of security for an efficient Searchable Symmetric Encryption (SSE) scheme completed in the Foundational Cryptography Framework (FCF). FCF is a Coq library for reasoning about cryptographic schemes in the computational model that features a small trusted computing base and an extensible design. Through this effort, we provide the first mechanized proof of security for an efficient SSE scheme, and we demonstrate that FCF is well-suited to reasoning about such complex protocols.","PeriodicalId":210917,"journal":{"name":"2015 IEEE 28th Computer Security Foundations Symposium","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Mechanized Proof of Security for Searchable Symmetric Encryption\",\"authors\":\"Adam Petcher, Greg Morrisett\",\"doi\":\"10.1109/CSF.2015.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a mechanized proof of security for an efficient Searchable Symmetric Encryption (SSE) scheme completed in the Foundational Cryptography Framework (FCF). FCF is a Coq library for reasoning about cryptographic schemes in the computational model that features a small trusted computing base and an extensible design. Through this effort, we provide the first mechanized proof of security for an efficient SSE scheme, and we demonstrate that FCF is well-suited to reasoning about such complex protocols.\",\"PeriodicalId\":210917,\"journal\":{\"name\":\"2015 IEEE 28th Computer Security Foundations Symposium\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 28th Computer Security Foundations Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF.2015.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th Computer Security Foundations Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2015.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们提出了一个在基础密码学框架(FCF)中完成的高效可搜索对称加密(SSE)方案的机械化安全性证明。FCF是一个Coq库,用于在计算模型中对加密方案进行推理,其特点是具有小型可信计算基础和可扩展设计。通过这一努力,我们为有效的SSE方案提供了第一个机械化的安全性证明,并且我们证明了FCF非常适合对此类复杂协议进行推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mechanized Proof of Security for Searchable Symmetric Encryption
We present a mechanized proof of security for an efficient Searchable Symmetric Encryption (SSE) scheme completed in the Foundational Cryptography Framework (FCF). FCF is a Coq library for reasoning about cryptographic schemes in the computational model that features a small trusted computing base and an extensible design. Through this effort, we provide the first mechanized proof of security for an efficient SSE scheme, and we demonstrate that FCF is well-suited to reasoning about such complex protocols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信