采用滑模法对异步电动机的转速、磁链大小和转子磁链角进行了mras型估计

M. Comanescu
{"title":"采用滑模法对异步电动机的转速、磁链大小和转子磁链角进行了mras型估计","authors":"M. Comanescu","doi":"10.1109/SPEEDAM.2014.6871913","DOIUrl":null,"url":null,"abstract":"The paper discusses the problem of estimating the speed, the flux magnitude and the rotor flux angle of the induction motor (IM) and presents an estimation method based on two Sliding Mode Observers (SMOs) and the Model Reference Adaptive System (MRAS) technique. The method is based on implementation of two SMOs that both yield the magnitude of the rotor flux; one observer is the reference model, the other is the adjustable model. The MRAS method is used to adapt the speed signal which is an input into both SMOs. The reference model is designed using the equations of the IM in the rotating reference frame. It is shown that its estimated flux magnitude is insensitive to the input speed. The adjustable model uses the IM equations in the stationary reference frame. Its output fluxes have magnitudes inverse proportional with the input speed; however, their phases are always accurate (this allows estimation of the flux angle). Using MRAS, the speed is corrected such that the flux magnitudes coming out of the two models match. Based on the structure developed, the paper also a speed estimation method. The simulations validate the theoretical development.","PeriodicalId":344918,"journal":{"name":"2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An MRAS-type estimator for the speed, flux magnitude and rotor flux angle of the induction motor using sliding mode\",\"authors\":\"M. Comanescu\",\"doi\":\"10.1109/SPEEDAM.2014.6871913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper discusses the problem of estimating the speed, the flux magnitude and the rotor flux angle of the induction motor (IM) and presents an estimation method based on two Sliding Mode Observers (SMOs) and the Model Reference Adaptive System (MRAS) technique. The method is based on implementation of two SMOs that both yield the magnitude of the rotor flux; one observer is the reference model, the other is the adjustable model. The MRAS method is used to adapt the speed signal which is an input into both SMOs. The reference model is designed using the equations of the IM in the rotating reference frame. It is shown that its estimated flux magnitude is insensitive to the input speed. The adjustable model uses the IM equations in the stationary reference frame. Its output fluxes have magnitudes inverse proportional with the input speed; however, their phases are always accurate (this allows estimation of the flux angle). Using MRAS, the speed is corrected such that the flux magnitudes coming out of the two models match. Based on the structure developed, the paper also a speed estimation method. The simulations validate the theoretical development.\",\"PeriodicalId\":344918,\"journal\":{\"name\":\"2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEEDAM.2014.6871913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEEDAM.2014.6871913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

讨论了异步电动机转速、磁链大小和转子磁链角的估计问题,提出了一种基于双滑模观测器(SMOs)和模型参考自适应系统技术的估计方法。该方法是基于两个SMOs的实现,它们都产生转子磁链的大小;一个观测器是参考模型,另一个是可调模型。MRAS方法用于调整速度信号,该信号是两个SMOs的输入。利用旋转参照系中IM的方程设计了参考模型。结果表明,其估计磁链大小对输入速度不敏感。可调模型采用静止参考系中的IM方程。其输出磁链的大小与输入速度成反比;然而,它们的相位总是精确的(这允许估计通量角)。使用MRAS,对速度进行校正,使两个模型输出的通量大小相匹配。在此基础上,提出了一种速度估计方法。仿真结果验证了理论推导的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An MRAS-type estimator for the speed, flux magnitude and rotor flux angle of the induction motor using sliding mode
The paper discusses the problem of estimating the speed, the flux magnitude and the rotor flux angle of the induction motor (IM) and presents an estimation method based on two Sliding Mode Observers (SMOs) and the Model Reference Adaptive System (MRAS) technique. The method is based on implementation of two SMOs that both yield the magnitude of the rotor flux; one observer is the reference model, the other is the adjustable model. The MRAS method is used to adapt the speed signal which is an input into both SMOs. The reference model is designed using the equations of the IM in the rotating reference frame. It is shown that its estimated flux magnitude is insensitive to the input speed. The adjustable model uses the IM equations in the stationary reference frame. Its output fluxes have magnitudes inverse proportional with the input speed; however, their phases are always accurate (this allows estimation of the flux angle). Using MRAS, the speed is corrected such that the flux magnitudes coming out of the two models match. Based on the structure developed, the paper also a speed estimation method. The simulations validate the theoretical development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信