Perbandingan mettoda K-NN, Random Forest和1D CNN untuk Mengklasifikasi数据EEG眼状态

Muhammad Ibnu Choldun Rachmatullah, A. Wicaksono, Virdiandry Putratama
{"title":"Perbandingan mettoda K-NN, Random Forest和1D CNN untuk Mengklasifikasi数据EEG眼状态","authors":"Muhammad Ibnu Choldun Rachmatullah, A. Wicaksono, Virdiandry Putratama","doi":"10.47065/josh.v4i2.2998","DOIUrl":null,"url":null,"abstract":"The use of machine learning / machine learning methods is very important in developing identification of the status of the human eye, especially in terms of processing Electroencephalogram (EEG) signals to identify eye status. In previous research the method used can be a combination method between supervised learning and unsupervised learning, or a single method using supervised learning. In this study, the EEG Eye State classification uses a single method with supervised learning, namely using the following methods: K-nearest neghbors (k-NN), random forest, and 1D Convolutional Neural Networks (1D CNNs). The performance of the three classifier methods is measured using four measures, namely: accuracy, recall, precision, and F1-Score.  From the experimental results it was found that the k-NN method has the best performance compared to the other two methods in terms of the four measures used, where the value of each measure is: accuracy = 82.30%; recall=82.30%; precision= 82.36%; and F1-Score=82.30%. K-NN is more suitable for classifying EEG Eye State than the other two methods, because all input attributes are from the dataset. has a data type of real numbers.","PeriodicalId":233506,"journal":{"name":"Journal of Information System Research (JOSH)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perbandingan Metoda K-NN, Random Forest dan 1D CNN untuk Mengklasifikasi Data EEG Eye State\",\"authors\":\"Muhammad Ibnu Choldun Rachmatullah, A. Wicaksono, Virdiandry Putratama\",\"doi\":\"10.47065/josh.v4i2.2998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of machine learning / machine learning methods is very important in developing identification of the status of the human eye, especially in terms of processing Electroencephalogram (EEG) signals to identify eye status. In previous research the method used can be a combination method between supervised learning and unsupervised learning, or a single method using supervised learning. In this study, the EEG Eye State classification uses a single method with supervised learning, namely using the following methods: K-nearest neghbors (k-NN), random forest, and 1D Convolutional Neural Networks (1D CNNs). The performance of the three classifier methods is measured using four measures, namely: accuracy, recall, precision, and F1-Score.  From the experimental results it was found that the k-NN method has the best performance compared to the other two methods in terms of the four measures used, where the value of each measure is: accuracy = 82.30%; recall=82.30%; precision= 82.36%; and F1-Score=82.30%. K-NN is more suitable for classifying EEG Eye State than the other two methods, because all input attributes are from the dataset. has a data type of real numbers.\",\"PeriodicalId\":233506,\"journal\":{\"name\":\"Journal of Information System Research (JOSH)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information System Research (JOSH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47065/josh.v4i2.2998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information System Research (JOSH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47065/josh.v4i2.2998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习/机器学习方法的使用在开发人眼状态识别方面非常重要,特别是在处理脑电图(EEG)信号以识别眼睛状态方面。在以往的研究中,使用的方法可以是有监督学习和无监督学习相结合的方法,也可以是使用有监督学习的单一方法。在本研究中,EEG眼状态分类使用了一种具有监督学习的单一方法,即使用以下方法:k-近邻(k-NN)、随机森林和1D卷积神经网络(1D cnn)。这三种分类器方法的性能用四个指标来衡量,即:准确率、召回率、精度和F1-Score。从实验结果来看,k-NN方法在使用的四个度量方面与其他两种方法相比具有最好的性能,其中每个度量的值为:准确率= 82.30%;回忆= 82.30%;精度= 82.36%;和F1-Score = 82.30%。K-NN比其他两种方法更适合于EEG Eye State分类,因为所有输入属性都来自数据集。具有实数的数据类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perbandingan Metoda K-NN, Random Forest dan 1D CNN untuk Mengklasifikasi Data EEG Eye State
The use of machine learning / machine learning methods is very important in developing identification of the status of the human eye, especially in terms of processing Electroencephalogram (EEG) signals to identify eye status. In previous research the method used can be a combination method between supervised learning and unsupervised learning, or a single method using supervised learning. In this study, the EEG Eye State classification uses a single method with supervised learning, namely using the following methods: K-nearest neghbors (k-NN), random forest, and 1D Convolutional Neural Networks (1D CNNs). The performance of the three classifier methods is measured using four measures, namely: accuracy, recall, precision, and F1-Score.  From the experimental results it was found that the k-NN method has the best performance compared to the other two methods in terms of the four measures used, where the value of each measure is: accuracy = 82.30%; recall=82.30%; precision= 82.36%; and F1-Score=82.30%. K-NN is more suitable for classifying EEG Eye State than the other two methods, because all input attributes are from the dataset. has a data type of real numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信