德国生物炭土壤技术温室气体减排潜力

I. Teichmann
{"title":"德国生物炭土壤技术温室气体减排潜力","authors":"I. Teichmann","doi":"10.2139/SSRN.2487765","DOIUrl":null,"url":null,"abstract":"Biochar is a carbon-rich solid obtained from the heating of biomass in the (near) absence of oxygen in a process called pyrolysis. Its deployment in soils is increasingly discussed as a promising means to sequester carbon in soils and, thus, to help mitigate climate change. For a wide range of feedstocks and scenarios and against the baseline of conventional feedstock management, we calculate the technical greenhouse-gas mitigation potentials of slow-pyrolysis biochar in 2015, 2030 and 2050 when the biochar is incorporated into agricultural soils in Germany and when the by-products from biochar production – pyrolysis oils and gases – are used as renewable sources of energy. Covering the greenhouse gases carbon dioxide, methane and nitrous oxide, our analysis reveals that biochar allows for an annual technical greenhouse-gas mitigation potential in Germany in the range of 2.8-10.2 million tonnes of carbon-dioxide equivalents by 2030 and 2.9-10.6 million tonnes of carbon-dioxide equivalents by 2050. This corresponds to approximately 0.4-1.5% and 0.3-1.1% of the respective German greenhouse-gas reduction targets in 2030 and 2050.","PeriodicalId":320530,"journal":{"name":"SRPN: Biofuels (Topic)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Technical Greenhouse-Gas Mitigation Potentials of Biochar Soil Incorporation in Germany\",\"authors\":\"I. Teichmann\",\"doi\":\"10.2139/SSRN.2487765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biochar is a carbon-rich solid obtained from the heating of biomass in the (near) absence of oxygen in a process called pyrolysis. Its deployment in soils is increasingly discussed as a promising means to sequester carbon in soils and, thus, to help mitigate climate change. For a wide range of feedstocks and scenarios and against the baseline of conventional feedstock management, we calculate the technical greenhouse-gas mitigation potentials of slow-pyrolysis biochar in 2015, 2030 and 2050 when the biochar is incorporated into agricultural soils in Germany and when the by-products from biochar production – pyrolysis oils and gases – are used as renewable sources of energy. Covering the greenhouse gases carbon dioxide, methane and nitrous oxide, our analysis reveals that biochar allows for an annual technical greenhouse-gas mitigation potential in Germany in the range of 2.8-10.2 million tonnes of carbon-dioxide equivalents by 2030 and 2.9-10.6 million tonnes of carbon-dioxide equivalents by 2050. This corresponds to approximately 0.4-1.5% and 0.3-1.1% of the respective German greenhouse-gas reduction targets in 2030 and 2050.\",\"PeriodicalId\":320530,\"journal\":{\"name\":\"SRPN: Biofuels (Topic)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SRPN: Biofuels (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/SSRN.2487765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SRPN: Biofuels (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.2487765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

生物炭是一种富含碳的固体,通过热解过程在(几乎)缺氧的情况下对生物质进行加热而获得。人们越来越多地讨论它在土壤中的应用,认为它是一种有希望的土壤固碳手段,从而有助于减缓气候变化。针对广泛的原料和情景,并针对传统原料管理的基线,我们计算了2015年、2030年和2050年慢热解生物炭在德国被纳入农业土壤以及生物炭生产的副产品——热解油和气体——被用作可再生能源时的技术温室气体减排潜力。涵盖温室气体二氧化碳、甲烷和一氧化二氮,我们的分析显示,到2030年,德国每年的技术温室气体减排潜力为280 - 1020万吨二氧化碳当量,到2050年为290 - 1060万吨二氧化碳当量。这相当于德国各自2030年和2050年温室气体减排目标的约0.4-1.5%和0.3-1.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Technical Greenhouse-Gas Mitigation Potentials of Biochar Soil Incorporation in Germany
Biochar is a carbon-rich solid obtained from the heating of biomass in the (near) absence of oxygen in a process called pyrolysis. Its deployment in soils is increasingly discussed as a promising means to sequester carbon in soils and, thus, to help mitigate climate change. For a wide range of feedstocks and scenarios and against the baseline of conventional feedstock management, we calculate the technical greenhouse-gas mitigation potentials of slow-pyrolysis biochar in 2015, 2030 and 2050 when the biochar is incorporated into agricultural soils in Germany and when the by-products from biochar production – pyrolysis oils and gases – are used as renewable sources of energy. Covering the greenhouse gases carbon dioxide, methane and nitrous oxide, our analysis reveals that biochar allows for an annual technical greenhouse-gas mitigation potential in Germany in the range of 2.8-10.2 million tonnes of carbon-dioxide equivalents by 2030 and 2.9-10.6 million tonnes of carbon-dioxide equivalents by 2050. This corresponds to approximately 0.4-1.5% and 0.3-1.1% of the respective German greenhouse-gas reduction targets in 2030 and 2050.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信