{"title":"窄带固定无线信道分集接收建模","authors":"D. Michelson, V. Erceg, L. Greenstein","doi":"10.1049/EL:19980716","DOIUrl":null,"url":null,"abstract":"A complete first-order statistical characterization of two-branch diversity reception over narrowband fixed wireless channels can be given in terms of just five channel parameters: the average path gains and Ricean K-factors for each branch and the complex envelope correlation coefficient between the time-varying parts of the two path gains. Propagation measurements collected in typical suburban environments have shown that each of these parameters, or its logarithm, is close to Gaussian. Accordingly, the set may be cast as a five-element vector of jointly random Gaussian processes which are completely specified by the means, standard variations, and mutual correlation coefficients of the five parameters.","PeriodicalId":261988,"journal":{"name":"1999 IEEE MTT-S International Topical Symposium on Technologies for Wireless Applications (Cat. No. 99TH8390)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Modeling diversity reception over narrowband fixed wireless channels\",\"authors\":\"D. Michelson, V. Erceg, L. Greenstein\",\"doi\":\"10.1049/EL:19980716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A complete first-order statistical characterization of two-branch diversity reception over narrowband fixed wireless channels can be given in terms of just five channel parameters: the average path gains and Ricean K-factors for each branch and the complex envelope correlation coefficient between the time-varying parts of the two path gains. Propagation measurements collected in typical suburban environments have shown that each of these parameters, or its logarithm, is close to Gaussian. Accordingly, the set may be cast as a five-element vector of jointly random Gaussian processes which are completely specified by the means, standard variations, and mutual correlation coefficients of the five parameters.\",\"PeriodicalId\":261988,\"journal\":{\"name\":\"1999 IEEE MTT-S International Topical Symposium on Technologies for Wireless Applications (Cat. No. 99TH8390)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 IEEE MTT-S International Topical Symposium on Technologies for Wireless Applications (Cat. No. 99TH8390)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/EL:19980716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE MTT-S International Topical Symposium on Technologies for Wireless Applications (Cat. No. 99TH8390)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/EL:19980716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling diversity reception over narrowband fixed wireless channels
A complete first-order statistical characterization of two-branch diversity reception over narrowband fixed wireless channels can be given in terms of just five channel parameters: the average path gains and Ricean K-factors for each branch and the complex envelope correlation coefficient between the time-varying parts of the two path gains. Propagation measurements collected in typical suburban environments have shown that each of these parameters, or its logarithm, is close to Gaussian. Accordingly, the set may be cast as a five-element vector of jointly random Gaussian processes which are completely specified by the means, standard variations, and mutual correlation coefficients of the five parameters.