论软件产品差异性对软件质量模型的影响

T. Khoshgoftaar, D. Lanning
{"title":"论软件产品差异性对软件质量模型的影响","authors":"T. Khoshgoftaar, D. Lanning","doi":"10.1109/ISSRE.1994.341360","DOIUrl":null,"url":null,"abstract":"The current software market favors software development organizations that apply software quality models. Software engineers fit quality models to data collected from past projects. Predictions from these models provide guidance in setting schedules and allocating resources for new and ongoing development projects. To improve model stability and predictive quality, engineers select models from the orthogonal linear combinations produced using principal components analysis. However, recent research revealed that the principal components underlying source code measures are not necessarily stable across software products. Thus, the principal components underlying the product used to fit a regression model can vary from the principal components underlying the product for which we desire predictions. We investigate the impact of this principal components instability on the predictive quality of regression models. To achieve this, we apply an analytical technique for accessing the aptness of a given model to a particular application.<<ETX>>","PeriodicalId":171359,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Software Reliability Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the impact of software product dissimilarity on software quality models\",\"authors\":\"T. Khoshgoftaar, D. Lanning\",\"doi\":\"10.1109/ISSRE.1994.341360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current software market favors software development organizations that apply software quality models. Software engineers fit quality models to data collected from past projects. Predictions from these models provide guidance in setting schedules and allocating resources for new and ongoing development projects. To improve model stability and predictive quality, engineers select models from the orthogonal linear combinations produced using principal components analysis. However, recent research revealed that the principal components underlying source code measures are not necessarily stable across software products. Thus, the principal components underlying the product used to fit a regression model can vary from the principal components underlying the product for which we desire predictions. We investigate the impact of this principal components instability on the predictive quality of regression models. To achieve this, we apply an analytical technique for accessing the aptness of a given model to a particular application.<<ETX>>\",\"PeriodicalId\":171359,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Symposium on Software Reliability Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Symposium on Software Reliability Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.1994.341360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Software Reliability Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.1994.341360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当前的软件市场倾向于应用软件质量模型的软件开发组织。软件工程师将质量模型与从过去项目中收集的数据相匹配。来自这些模型的预测为新的和正在进行的开发项目设置时间表和分配资源提供了指导。为了提高模型的稳定性和预测质量,工程师从使用主成分分析产生的正交线性组合中选择模型。然而,最近的研究表明,源代码度量的主要组件在软件产品中并不一定是稳定的。因此,用于拟合回归模型的产品的主成分可能与我们希望预测的产品的主成分不同。我们研究了这种主成分不稳定性对回归模型预测质量的影响。为了实现这一点,我们应用一种分析技术来访问给定模型对特定应用程序的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the impact of software product dissimilarity on software quality models
The current software market favors software development organizations that apply software quality models. Software engineers fit quality models to data collected from past projects. Predictions from these models provide guidance in setting schedules and allocating resources for new and ongoing development projects. To improve model stability and predictive quality, engineers select models from the orthogonal linear combinations produced using principal components analysis. However, recent research revealed that the principal components underlying source code measures are not necessarily stable across software products. Thus, the principal components underlying the product used to fit a regression model can vary from the principal components underlying the product for which we desire predictions. We investigate the impact of this principal components instability on the predictive quality of regression models. To achieve this, we apply an analytical technique for accessing the aptness of a given model to a particular application.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信