具有重尾误差的GARCH(1,1)过程参数估计

Hailong Chen, Chengji You, Deyun Chen
{"title":"具有重尾误差的GARCH(1,1)过程参数估计","authors":"Hailong Chen, Chengji You, Deyun Chen","doi":"10.1109/IFOST.2012.6357606","DOIUrl":null,"url":null,"abstract":"This paper studies a modification of quasi-maximum likelihood estimator for GARCH (1, 1) process with the errors, whose squares have regularly varying tail probabilities with the exponent α, α >; 0. We showed that, this estimator is unbiased and asymptotically normal with standard convergence rate of n1/2 regardless of whether the errors are heavy-tailed.","PeriodicalId":319762,"journal":{"name":"2012 7th International Forum on Strategic Technology (IFOST)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameters estimator of GARCH(1, 1) process with heavy tailed errors\",\"authors\":\"Hailong Chen, Chengji You, Deyun Chen\",\"doi\":\"10.1109/IFOST.2012.6357606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies a modification of quasi-maximum likelihood estimator for GARCH (1, 1) process with the errors, whose squares have regularly varying tail probabilities with the exponent α, α >; 0. We showed that, this estimator is unbiased and asymptotically normal with standard convergence rate of n1/2 regardless of whether the errors are heavy-tailed.\",\"PeriodicalId\":319762,\"journal\":{\"name\":\"2012 7th International Forum on Strategic Technology (IFOST)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th International Forum on Strategic Technology (IFOST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFOST.2012.6357606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th International Forum on Strategic Technology (IFOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFOST.2012.6357606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了GARCH(1,1)过程的拟极大似然估计的一种修正,该过程的平方尾部概率随指数α, α >有规则变化;0. 我们证明,无论误差是否为重尾,该估计量都是无偏和渐近正态的,其标准收敛速率为n /2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameters estimator of GARCH(1, 1) process with heavy tailed errors
This paper studies a modification of quasi-maximum likelihood estimator for GARCH (1, 1) process with the errors, whose squares have regularly varying tail probabilities with the exponent α, α >; 0. We showed that, this estimator is unbiased and asymptotically normal with standard convergence rate of n1/2 regardless of whether the errors are heavy-tailed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信