{"title":"基于agent的无人空中机动大都市区疏散仿真","authors":"Jonathan West, L. Sherry","doi":"10.1109/ICNS50378.2020.9222890","DOIUrl":null,"url":null,"abstract":"Researchers have proposed a portfolio of autonomous transportation systems for metropolitan areas including Urban Air Mobility (UAM) systems. Urban Air Mobility systems consist of low occupant battery operated helicopters, similar to drones. In a future state, when Urban Air Mobility is a ubiquitous transportation option, urban planners will need to understand the potential role of the Urban Air Mobility system for an efficient evacuation of a metropolitan area. An agent-based model is used to assess the evacuation efficiency as throughput and time to complete. The agent-based model includes autonomous Urban Air Mobility systems operating in an urban environment on routes defined by existing city streets and originating at a central location that may be on the ground or on the top of a building. In the event of an evacuation, the routing of each Urban Air Mobility unit is determined by a central air traffic flow management system to maximize the evacuation throughput. Standard deviation of time-to-complete is computing to understand where the model shows convergence. The implications of the results and limitations of the model are discussed.","PeriodicalId":424869,"journal":{"name":"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Agent-Based Simulation of Metropolitan Area Evacuation by Unmanned Air Mobility\",\"authors\":\"Jonathan West, L. Sherry\",\"doi\":\"10.1109/ICNS50378.2020.9222890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers have proposed a portfolio of autonomous transportation systems for metropolitan areas including Urban Air Mobility (UAM) systems. Urban Air Mobility systems consist of low occupant battery operated helicopters, similar to drones. In a future state, when Urban Air Mobility is a ubiquitous transportation option, urban planners will need to understand the potential role of the Urban Air Mobility system for an efficient evacuation of a metropolitan area. An agent-based model is used to assess the evacuation efficiency as throughput and time to complete. The agent-based model includes autonomous Urban Air Mobility systems operating in an urban environment on routes defined by existing city streets and originating at a central location that may be on the ground or on the top of a building. In the event of an evacuation, the routing of each Urban Air Mobility unit is determined by a central air traffic flow management system to maximize the evacuation throughput. Standard deviation of time-to-complete is computing to understand where the model shows convergence. The implications of the results and limitations of the model are discussed.\",\"PeriodicalId\":424869,\"journal\":{\"name\":\"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNS50378.2020.9222890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNS50378.2020.9222890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Agent-Based Simulation of Metropolitan Area Evacuation by Unmanned Air Mobility
Researchers have proposed a portfolio of autonomous transportation systems for metropolitan areas including Urban Air Mobility (UAM) systems. Urban Air Mobility systems consist of low occupant battery operated helicopters, similar to drones. In a future state, when Urban Air Mobility is a ubiquitous transportation option, urban planners will need to understand the potential role of the Urban Air Mobility system for an efficient evacuation of a metropolitan area. An agent-based model is used to assess the evacuation efficiency as throughput and time to complete. The agent-based model includes autonomous Urban Air Mobility systems operating in an urban environment on routes defined by existing city streets and originating at a central location that may be on the ground or on the top of a building. In the event of an evacuation, the routing of each Urban Air Mobility unit is determined by a central air traffic flow management system to maximize the evacuation throughput. Standard deviation of time-to-complete is computing to understand where the model shows convergence. The implications of the results and limitations of the model are discussed.