基于agent的无人空中机动大都市区疏散仿真

Jonathan West, L. Sherry
{"title":"基于agent的无人空中机动大都市区疏散仿真","authors":"Jonathan West, L. Sherry","doi":"10.1109/ICNS50378.2020.9222890","DOIUrl":null,"url":null,"abstract":"Researchers have proposed a portfolio of autonomous transportation systems for metropolitan areas including Urban Air Mobility (UAM) systems. Urban Air Mobility systems consist of low occupant battery operated helicopters, similar to drones. In a future state, when Urban Air Mobility is a ubiquitous transportation option, urban planners will need to understand the potential role of the Urban Air Mobility system for an efficient evacuation of a metropolitan area. An agent-based model is used to assess the evacuation efficiency as throughput and time to complete. The agent-based model includes autonomous Urban Air Mobility systems operating in an urban environment on routes defined by existing city streets and originating at a central location that may be on the ground or on the top of a building. In the event of an evacuation, the routing of each Urban Air Mobility unit is determined by a central air traffic flow management system to maximize the evacuation throughput. Standard deviation of time-to-complete is computing to understand where the model shows convergence. The implications of the results and limitations of the model are discussed.","PeriodicalId":424869,"journal":{"name":"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Agent-Based Simulation of Metropolitan Area Evacuation by Unmanned Air Mobility\",\"authors\":\"Jonathan West, L. Sherry\",\"doi\":\"10.1109/ICNS50378.2020.9222890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers have proposed a portfolio of autonomous transportation systems for metropolitan areas including Urban Air Mobility (UAM) systems. Urban Air Mobility systems consist of low occupant battery operated helicopters, similar to drones. In a future state, when Urban Air Mobility is a ubiquitous transportation option, urban planners will need to understand the potential role of the Urban Air Mobility system for an efficient evacuation of a metropolitan area. An agent-based model is used to assess the evacuation efficiency as throughput and time to complete. The agent-based model includes autonomous Urban Air Mobility systems operating in an urban environment on routes defined by existing city streets and originating at a central location that may be on the ground or on the top of a building. In the event of an evacuation, the routing of each Urban Air Mobility unit is determined by a central air traffic flow management system to maximize the evacuation throughput. Standard deviation of time-to-complete is computing to understand where the model shows convergence. The implications of the results and limitations of the model are discussed.\",\"PeriodicalId\":424869,\"journal\":{\"name\":\"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNS50378.2020.9222890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Integrated Communications Navigation and Surveillance Conference (ICNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNS50378.2020.9222890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究人员提出了包括城市空中交通(UAM)系统在内的大都市自主交通系统组合。城市空中机动系统由低乘员电池操作的直升机组成,类似于无人机。在未来,当城市空中交通成为一种无处不在的交通选择时,城市规划者将需要了解城市空中交通系统在大都市地区有效疏散方面的潜在作用。采用基于智能体的模型,以吞吐量和完成时间来评估疏散效率。基于智能体的模型包括在城市环境中运行的自主城市空中交通系统,该系统按照现有城市街道定义的路线运行,并从地面或建筑物顶部的中心位置出发。在疏散事件中,每个城市空中机动单元的路线由中央空中交通流量管理系统确定,以最大限度地提高疏散吞吐量。完成时间的标准偏差是计算,以了解模型在哪里显示收敛。讨论了结果的含义和模型的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Agent-Based Simulation of Metropolitan Area Evacuation by Unmanned Air Mobility
Researchers have proposed a portfolio of autonomous transportation systems for metropolitan areas including Urban Air Mobility (UAM) systems. Urban Air Mobility systems consist of low occupant battery operated helicopters, similar to drones. In a future state, when Urban Air Mobility is a ubiquitous transportation option, urban planners will need to understand the potential role of the Urban Air Mobility system for an efficient evacuation of a metropolitan area. An agent-based model is used to assess the evacuation efficiency as throughput and time to complete. The agent-based model includes autonomous Urban Air Mobility systems operating in an urban environment on routes defined by existing city streets and originating at a central location that may be on the ground or on the top of a building. In the event of an evacuation, the routing of each Urban Air Mobility unit is determined by a central air traffic flow management system to maximize the evacuation throughput. Standard deviation of time-to-complete is computing to understand where the model shows convergence. The implications of the results and limitations of the model are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信