使用语义和杆状地标改进车辆定位

M. Sefati, Magnus Daum, Bjoern Sondermann, K. Kreisköther, A. Kampker
{"title":"使用语义和杆状地标改进车辆定位","authors":"M. Sefati, Magnus Daum, Bjoern Sondermann, K. Kreisköther, A. Kampker","doi":"10.1109/IVS.2017.7995692","DOIUrl":null,"url":null,"abstract":"In this paper, we present a framework for vehicle self-localization in urban environments. It utilizes semantic and distinctive physical objects such as trees, traffic signs or street lamps as robust landmarks and deduces the global vehicle pose in conjunction with an offline map. Since it is independent from the availability of road markings and the knowledge of street courses, application in dense urban areas with high rates dynamic objects and road users is possible. This paper introduces novel methods for vehicular environment perception via LiDAR scanner and stereo camera, as well as models for their association with a high-precision digital map to estimate the vehicle's position via Adaptive Monte-Carlo Localization. Evaluation in urban areas indicates the potential for global positioning accuracy below 0.30 m for LiDAR and below 0.50 m for stereo camera, as well as a corresponding heading error below 1°.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Improving vehicle localization using semantic and pole-like landmarks\",\"authors\":\"M. Sefati, Magnus Daum, Bjoern Sondermann, K. Kreisköther, A. Kampker\",\"doi\":\"10.1109/IVS.2017.7995692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a framework for vehicle self-localization in urban environments. It utilizes semantic and distinctive physical objects such as trees, traffic signs or street lamps as robust landmarks and deduces the global vehicle pose in conjunction with an offline map. Since it is independent from the availability of road markings and the knowledge of street courses, application in dense urban areas with high rates dynamic objects and road users is possible. This paper introduces novel methods for vehicular environment perception via LiDAR scanner and stereo camera, as well as models for their association with a high-precision digital map to estimate the vehicle's position via Adaptive Monte-Carlo Localization. Evaluation in urban areas indicates the potential for global positioning accuracy below 0.30 m for LiDAR and below 0.50 m for stereo camera, as well as a corresponding heading error below 1°.\",\"PeriodicalId\":143367,\"journal\":{\"name\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2017.7995692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

本文提出了一种城市环境下车辆自定位的框架。它利用语义和独特的物理对象,如树木、交通标志或路灯作为强大的地标,并结合离线地图推断出全球车辆的姿态。由于它独立于道路标记的可用性和街道路线的知识,因此可以在具有高动态物体和道路使用者的密集城市地区应用。本文介绍了通过激光雷达扫描仪和立体摄像头进行车辆环境感知的新方法,以及它们与高精度数字地图相关联的模型,通过自适应蒙特卡罗定位来估计车辆的位置。在城市地区的评估表明,激光雷达的全球定位精度可能低于0.30 m,立体相机的全球定位精度可能低于0.50 m,相应的航向误差可能低于1°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving vehicle localization using semantic and pole-like landmarks
In this paper, we present a framework for vehicle self-localization in urban environments. It utilizes semantic and distinctive physical objects such as trees, traffic signs or street lamps as robust landmarks and deduces the global vehicle pose in conjunction with an offline map. Since it is independent from the availability of road markings and the knowledge of street courses, application in dense urban areas with high rates dynamic objects and road users is possible. This paper introduces novel methods for vehicular environment perception via LiDAR scanner and stereo camera, as well as models for their association with a high-precision digital map to estimate the vehicle's position via Adaptive Monte-Carlo Localization. Evaluation in urban areas indicates the potential for global positioning accuracy below 0.30 m for LiDAR and below 0.50 m for stereo camera, as well as a corresponding heading error below 1°.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信