基于差分进化学习的神经网络人脸识别

Shih-Yen Huang, Cheng-Jian Lin
{"title":"基于差分进化学习的神经网络人脸识别","authors":"Shih-Yen Huang, Cheng-Jian Lin","doi":"10.1109/IS3C.2014.104","DOIUrl":null,"url":null,"abstract":"In this paper, we present an innovative method that combines two-dimensional texture and three-dimensional (3D) images surface feature vectors. Next, we use Gabor wavelets extracting local features at different scales and orientations by two-dimensional facial images. Next, we combine the texture with the three-dimensional (3D) images surface feature vectors based on principal component analysis (PCA) to obtain feature vectors from grey and facial surface images. We also propose a differential evolution (DE) algorithm for face recognition based on multilayer neural networks as an identification model. In ours experimental results demonstrate for the recognition different face poses and facial expressions method was efficiency.","PeriodicalId":149730,"journal":{"name":"2014 International Symposium on Computer, Consumer and Control","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Neural Networks with Differential Evolution Learning for Face Recognition\",\"authors\":\"Shih-Yen Huang, Cheng-Jian Lin\",\"doi\":\"10.1109/IS3C.2014.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an innovative method that combines two-dimensional texture and three-dimensional (3D) images surface feature vectors. Next, we use Gabor wavelets extracting local features at different scales and orientations by two-dimensional facial images. Next, we combine the texture with the three-dimensional (3D) images surface feature vectors based on principal component analysis (PCA) to obtain feature vectors from grey and facial surface images. We also propose a differential evolution (DE) algorithm for face recognition based on multilayer neural networks as an identification model. In ours experimental results demonstrate for the recognition different face poses and facial expressions method was efficiency.\",\"PeriodicalId\":149730,\"journal\":{\"name\":\"2014 International Symposium on Computer, Consumer and Control\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Symposium on Computer, Consumer and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS3C.2014.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Computer, Consumer and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS3C.2014.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种结合二维纹理和三维图像表面特征向量的创新方法。其次,利用Gabor小波提取二维人脸图像在不同尺度和方向上的局部特征。接下来,我们将纹理与基于主成分分析(PCA)的三维图像表面特征向量相结合,从灰度图像和人脸表面图像中获得特征向量。我们还提出了一种基于多层神经网络作为识别模型的人脸识别差分进化算法。实验结果表明,该方法对于识别不同的人脸姿态和面部表情是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Neural Networks with Differential Evolution Learning for Face Recognition
In this paper, we present an innovative method that combines two-dimensional texture and three-dimensional (3D) images surface feature vectors. Next, we use Gabor wavelets extracting local features at different scales and orientations by two-dimensional facial images. Next, we combine the texture with the three-dimensional (3D) images surface feature vectors based on principal component analysis (PCA) to obtain feature vectors from grey and facial surface images. We also propose a differential evolution (DE) algorithm for face recognition based on multilayer neural networks as an identification model. In ours experimental results demonstrate for the recognition different face poses and facial expressions method was efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信