人类动作识别中无界张量特征的n球直方图研究

Ngoc Nam Bui, J. Kim
{"title":"人类动作识别中无界张量特征的n球直方图研究","authors":"Ngoc Nam Bui, J. Kim","doi":"10.37394/232028.2022.2.2","DOIUrl":null,"url":null,"abstract":"Recent years, Dense Trajectory features has a crucial role in extracting implicit features for action recognition. The method encloses motion and appearance descriptors to specify characteristics of each trajectory. Moreover, combining gradient and optical flow field using tensor product has made a strong positive impact on the result as we introduced in our previous work. In this paper, a breakthrough concept of encoding a high dimensional unbound space using spherical coordinate is introduced and imposed to obtain sophisticated spherical tensor features. The experimental result shows that our propose features outperforms other conventional ones and the combination of all feature channels achieves the highest accuracy rate in our selfrecorded dataset.","PeriodicalId":191618,"journal":{"name":"International Journal of Computational and Applied Mathematics & Computer Science","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on N-Spherical Histogram for Unbounded Tensor Features in Human Action Recognition\",\"authors\":\"Ngoc Nam Bui, J. Kim\",\"doi\":\"10.37394/232028.2022.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years, Dense Trajectory features has a crucial role in extracting implicit features for action recognition. The method encloses motion and appearance descriptors to specify characteristics of each trajectory. Moreover, combining gradient and optical flow field using tensor product has made a strong positive impact on the result as we introduced in our previous work. In this paper, a breakthrough concept of encoding a high dimensional unbound space using spherical coordinate is introduced and imposed to obtain sophisticated spherical tensor features. The experimental result shows that our propose features outperforms other conventional ones and the combination of all feature channels achieves the highest accuracy rate in our selfrecorded dataset.\",\"PeriodicalId\":191618,\"journal\":{\"name\":\"International Journal of Computational and Applied Mathematics & Computer Science\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational and Applied Mathematics & Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232028.2022.2.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational and Applied Mathematics & Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232028.2022.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,密集轨迹特征在动作识别的隐式特征提取中起着至关重要的作用。该方法包含运动和外观描述符来指定每个轨迹的特征。此外,利用张量积结合梯度和光流场对结果产生了很强的积极影响,正如我们在之前的工作中介绍的那样。本文引入了一种突破性的概念,即利用球坐标对高维无界空间进行编码,从而获得复杂的球张量特征。实验结果表明,我们提出的特征优于其他传统特征,并且所有特征通道的组合在我们的自记录数据集中达到了最高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on N-Spherical Histogram for Unbounded Tensor Features in Human Action Recognition
Recent years, Dense Trajectory features has a crucial role in extracting implicit features for action recognition. The method encloses motion and appearance descriptors to specify characteristics of each trajectory. Moreover, combining gradient and optical flow field using tensor product has made a strong positive impact on the result as we introduced in our previous work. In this paper, a breakthrough concept of encoding a high dimensional unbound space using spherical coordinate is introduced and imposed to obtain sophisticated spherical tensor features. The experimental result shows that our propose features outperforms other conventional ones and the combination of all feature channels achieves the highest accuracy rate in our selfrecorded dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信