{"title":"最大化SRAM能源效率利用MTCMOS技术","authors":"Bo Wang, Jun Zhou, T. T. Kim","doi":"10.1109/ACQED.2012.6320472","DOIUrl":null,"url":null,"abstract":"Higher-Vth devices in the cross-coupled latches and the write access transistors, and lower-Vth devices in the read ports are preferred for reducing leakage current without sacrificing performance. However, at ultra-low supply voltage levels, higher-Vth devices can retard or nullify energy efficiency due to substantially slower write speed than read. This paper presents energy efficiency maximization techniques for 8T SRAMs utilizing multi-threshold CMOS (MTCMOS) technology and various design techniques. Simulation results using a commercial 65 nm technology show that the SRAM energy efficiency can improved up to 33× through MTCMOS and prior power reduction and performance boosting techniques.","PeriodicalId":161858,"journal":{"name":"2012 4th Asia Symposium on Quality Electronic Design (ASQED)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Maximization of SRAM energy efficiency utilizing MTCMOS technology\",\"authors\":\"Bo Wang, Jun Zhou, T. T. Kim\",\"doi\":\"10.1109/ACQED.2012.6320472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher-Vth devices in the cross-coupled latches and the write access transistors, and lower-Vth devices in the read ports are preferred for reducing leakage current without sacrificing performance. However, at ultra-low supply voltage levels, higher-Vth devices can retard or nullify energy efficiency due to substantially slower write speed than read. This paper presents energy efficiency maximization techniques for 8T SRAMs utilizing multi-threshold CMOS (MTCMOS) technology and various design techniques. Simulation results using a commercial 65 nm technology show that the SRAM energy efficiency can improved up to 33× through MTCMOS and prior power reduction and performance boosting techniques.\",\"PeriodicalId\":161858,\"journal\":{\"name\":\"2012 4th Asia Symposium on Quality Electronic Design (ASQED)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 4th Asia Symposium on Quality Electronic Design (ASQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACQED.2012.6320472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 4th Asia Symposium on Quality Electronic Design (ASQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACQED.2012.6320472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximization of SRAM energy efficiency utilizing MTCMOS technology
Higher-Vth devices in the cross-coupled latches and the write access transistors, and lower-Vth devices in the read ports are preferred for reducing leakage current without sacrificing performance. However, at ultra-low supply voltage levels, higher-Vth devices can retard or nullify energy efficiency due to substantially slower write speed than read. This paper presents energy efficiency maximization techniques for 8T SRAMs utilizing multi-threshold CMOS (MTCMOS) technology and various design techniques. Simulation results using a commercial 65 nm technology show that the SRAM energy efficiency can improved up to 33× through MTCMOS and prior power reduction and performance boosting techniques.