利用VMD和深度神经网络提高串行电弧检测性能

Sangick Lee, Seokwoo Kang, Taewon Kim, Seungsoo Lee, Mabae Kim
{"title":"利用VMD和深度神经网络提高串行电弧检测性能","authors":"Sangick Lee, Seokwoo Kang, Taewon Kim, Seungsoo Lee, Mabae Kim","doi":"10.1109/MWSCAS.2019.8885020","DOIUrl":null,"url":null,"abstract":"Serial arc is one of factors causing electrical fires. Over the past decades, a variety of researches have been carried out to detect arc signals using frequency characteristics, wavelet analysis and statistical features. However, the usage of those features has shown low arc-detection performance. To solve this, we employ variational mode decomposition (VMD) to generate more time-domain signals, from which statistical features are computed from VMD mode signals, providing more informative features. Using a deep neural network (DNN) as an arc classifier, experiments validate that the VMD could improve the arc-detection performance by 4 percent.","PeriodicalId":287815,"journal":{"name":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improving the Performance of Serial Arc Detection using VMD and Deep Neural Network\",\"authors\":\"Sangick Lee, Seokwoo Kang, Taewon Kim, Seungsoo Lee, Mabae Kim\",\"doi\":\"10.1109/MWSCAS.2019.8885020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serial arc is one of factors causing electrical fires. Over the past decades, a variety of researches have been carried out to detect arc signals using frequency characteristics, wavelet analysis and statistical features. However, the usage of those features has shown low arc-detection performance. To solve this, we employ variational mode decomposition (VMD) to generate more time-domain signals, from which statistical features are computed from VMD mode signals, providing more informative features. Using a deep neural network (DNN) as an arc classifier, experiments validate that the VMD could improve the arc-detection performance by 4 percent.\",\"PeriodicalId\":287815,\"journal\":{\"name\":\"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2019.8885020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2019.8885020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

连续电弧是引起电气火灾的因素之一。在过去的几十年里,人们进行了各种研究,利用频率特性、小波分析和统计特征来检测电弧信号。然而,这些特征的使用显示出较低的电弧检测性能。为了解决这个问题,我们采用变分模态分解(VMD)来产生更多的时域信号,从VMD模态信号中计算统计特征,提供更多的信息特征。使用深度神经网络(DNN)作为电弧分类器,实验验证了VMD可以将电弧检测性能提高4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Performance of Serial Arc Detection using VMD and Deep Neural Network
Serial arc is one of factors causing electrical fires. Over the past decades, a variety of researches have been carried out to detect arc signals using frequency characteristics, wavelet analysis and statistical features. However, the usage of those features has shown low arc-detection performance. To solve this, we employ variational mode decomposition (VMD) to generate more time-domain signals, from which statistical features are computed from VMD mode signals, providing more informative features. Using a deep neural network (DNN) as an arc classifier, experiments validate that the VMD could improve the arc-detection performance by 4 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信