用于可穿戴系统的印刷压阻应变传感器

Prakash Karipoth, R. Dahiya
{"title":"用于可穿戴系统的印刷压阻应变传感器","authors":"Prakash Karipoth, R. Dahiya","doi":"10.1109/FLEPS49123.2020.9239478","DOIUrl":null,"url":null,"abstract":"Printed strain sensors are on high demand for flexible electronics and smart wearables. They are expected to exhibit high Figure of merits in terms of sensitivity, reliability, cost effectiveness, ease of fabrication etc. However, it is challenging to meet these attributes simultaneously. In this paper, we present a simple yet efficient method to fabricate the printed piezoresistive strain sensors with composite of carbon-based and silver-based pastes. The composite paste containing 80% and 20% by volume of carbon and silver paste was printed on poly vinyl chloride (PVC) substrate to realize the piezoresistive strain sensor over an area of 20 mm x 2 mm. The electromechanical characterization of the sensor demonstrated sensitivity of the order of 80% ($\\Delta$R/R) with good repeatability and stability. The piezoresistive behaviour of presented printed composite material is owing to the modulation of electrical conductivity and conduction path by the minor inclusion of highly conductive silver fillers in a slightly less conductive carbon matrix. Finally, the strain sensor was integrated on the finger of a vinyl glove and response was monitored with finger movements. The obtained results point towards the potential use of the sensor for flexible electronics, robotics and smart wearable devices.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Printed Piezoresistive Strain sensors for Wearable Systems\",\"authors\":\"Prakash Karipoth, R. Dahiya\",\"doi\":\"10.1109/FLEPS49123.2020.9239478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Printed strain sensors are on high demand for flexible electronics and smart wearables. They are expected to exhibit high Figure of merits in terms of sensitivity, reliability, cost effectiveness, ease of fabrication etc. However, it is challenging to meet these attributes simultaneously. In this paper, we present a simple yet efficient method to fabricate the printed piezoresistive strain sensors with composite of carbon-based and silver-based pastes. The composite paste containing 80% and 20% by volume of carbon and silver paste was printed on poly vinyl chloride (PVC) substrate to realize the piezoresistive strain sensor over an area of 20 mm x 2 mm. The electromechanical characterization of the sensor demonstrated sensitivity of the order of 80% ($\\\\Delta$R/R) with good repeatability and stability. The piezoresistive behaviour of presented printed composite material is owing to the modulation of electrical conductivity and conduction path by the minor inclusion of highly conductive silver fillers in a slightly less conductive carbon matrix. Finally, the strain sensor was integrated on the finger of a vinyl glove and response was monitored with finger movements. The obtained results point towards the potential use of the sensor for flexible electronics, robotics and smart wearable devices.\",\"PeriodicalId\":101496,\"journal\":{\"name\":\"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FLEPS49123.2020.9239478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FLEPS49123.2020.9239478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

印刷应变传感器对柔性电子产品和智能可穿戴设备的需求很高。它们有望在灵敏度、可靠性、成本效益、易于制造等方面表现出很高的优点。然而,同时满足这些属性是具有挑战性的。本文提出了一种简单而有效的碳基和银基复合材料印刷压阻应变传感器的制备方法。在聚氯乙烯(PVC)衬底上印刷了含有80%和20%体积碳和银的复合浆料,实现了面积为20mm x 2mm的压阻式应变传感器。该传感器的机电特性表明,灵敏度为80% ($\Delta$R/R),具有良好的重复性和稳定性。所提出的印刷复合材料的压阻行为是由于电导率和传导路径的调制,通过少量的高导电性银填料在导电性稍差的碳基体中。最后,将应变传感器集成在乙烯基手套的手指上,并通过手指的运动来监测响应。获得的结果指向了传感器在柔性电子、机器人和智能可穿戴设备上的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Printed Piezoresistive Strain sensors for Wearable Systems
Printed strain sensors are on high demand for flexible electronics and smart wearables. They are expected to exhibit high Figure of merits in terms of sensitivity, reliability, cost effectiveness, ease of fabrication etc. However, it is challenging to meet these attributes simultaneously. In this paper, we present a simple yet efficient method to fabricate the printed piezoresistive strain sensors with composite of carbon-based and silver-based pastes. The composite paste containing 80% and 20% by volume of carbon and silver paste was printed on poly vinyl chloride (PVC) substrate to realize the piezoresistive strain sensor over an area of 20 mm x 2 mm. The electromechanical characterization of the sensor demonstrated sensitivity of the order of 80% ($\Delta$R/R) with good repeatability and stability. The piezoresistive behaviour of presented printed composite material is owing to the modulation of electrical conductivity and conduction path by the minor inclusion of highly conductive silver fillers in a slightly less conductive carbon matrix. Finally, the strain sensor was integrated on the finger of a vinyl glove and response was monitored with finger movements. The obtained results point towards the potential use of the sensor for flexible electronics, robotics and smart wearable devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信