基于gpu的n检测过渡故障ATPG

Kuan-Yu Liao, Sheng-Chang Hsu, C. Li
{"title":"基于gpu的n检测过渡故障ATPG","authors":"Kuan-Yu Liao, Sheng-Chang Hsu, C. Li","doi":"10.1145/2463209.2488769","DOIUrl":null,"url":null,"abstract":"This is a massively parallel ATPG that explores device-level, block-level and word-level parallelism in GPU. Eight-detect transition fault ATPG experiments on large benchmark circuits show that our technique achieved 5.6 and 1.6 times speedup compared with a single-core and 8-core CPU commercial tool, respectively. Test patterns selected from our test set are about the same length and quality as those selected from commercial N-detect ATPG. To the best of our knowledge, this is the first proposed GPU-based ATPG algorithm.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"GPU-based N-detect transition fault ATPG\",\"authors\":\"Kuan-Yu Liao, Sheng-Chang Hsu, C. Li\",\"doi\":\"10.1145/2463209.2488769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a massively parallel ATPG that explores device-level, block-level and word-level parallelism in GPU. Eight-detect transition fault ATPG experiments on large benchmark circuits show that our technique achieved 5.6 and 1.6 times speedup compared with a single-core and 8-core CPU commercial tool, respectively. Test patterns selected from our test set are about the same length and quality as those selected from commercial N-detect ATPG. To the best of our knowledge, this is the first proposed GPU-based ATPG algorithm.\",\"PeriodicalId\":320207,\"journal\":{\"name\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463209.2488769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

这是一个大规模并行ATPG,探索GPU中的设备级,块级和字级并行性。在大型基准电路上进行的8检测过渡故障ATPG实验表明,与单核和8核商用CPU工具相比,我们的技术分别实现了5.6倍和1.6倍的加速。从我们的测试集中选择的测试图案与从商业N-detect ATPG中选择的测试图案的长度和质量大致相同。据我们所知,这是第一个基于gpu的ATPG算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU-based N-detect transition fault ATPG
This is a massively parallel ATPG that explores device-level, block-level and word-level parallelism in GPU. Eight-detect transition fault ATPG experiments on large benchmark circuits show that our technique achieved 5.6 and 1.6 times speedup compared with a single-core and 8-core CPU commercial tool, respectively. Test patterns selected from our test set are about the same length and quality as those selected from commercial N-detect ATPG. To the best of our knowledge, this is the first proposed GPU-based ATPG algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信