{"title":"基于无源相位波动抵消的光纤稳定频率传播","authors":"Juan Wei, Fangzheng Zhang, S. Pan, Lan Yu","doi":"10.1109/EUMC.2015.7346003","DOIUrl":null,"url":null,"abstract":"A compact scheme for stable frequency dissemination over optical fiber is proposed and demonstrated. A standard signal in the center station is delivered to the remote end without any assistant signal source. The frequency of the received signal is the same as the signal source in the center station. A proof-of-concept experiment is performed. A 6-GHz standard signal is transmitted in a 20-km fiber. The phase jitter of the transmission was reduced from more than 41 ps to less than 1.17 ps.","PeriodicalId":350086,"journal":{"name":"2015 European Microwave Conference (EuMC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stable frequency dissemination via optical fiber based on passive phase fluctuation cancellation\",\"authors\":\"Juan Wei, Fangzheng Zhang, S. Pan, Lan Yu\",\"doi\":\"10.1109/EUMC.2015.7346003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compact scheme for stable frequency dissemination over optical fiber is proposed and demonstrated. A standard signal in the center station is delivered to the remote end without any assistant signal source. The frequency of the received signal is the same as the signal source in the center station. A proof-of-concept experiment is performed. A 6-GHz standard signal is transmitted in a 20-km fiber. The phase jitter of the transmission was reduced from more than 41 ps to less than 1.17 ps.\",\"PeriodicalId\":350086,\"journal\":{\"name\":\"2015 European Microwave Conference (EuMC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Microwave Conference (EuMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUMC.2015.7346003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Microwave Conference (EuMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUMC.2015.7346003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stable frequency dissemination via optical fiber based on passive phase fluctuation cancellation
A compact scheme for stable frequency dissemination over optical fiber is proposed and demonstrated. A standard signal in the center station is delivered to the remote end without any assistant signal source. The frequency of the received signal is the same as the signal source in the center station. A proof-of-concept experiment is performed. A 6-GHz standard signal is transmitted in a 20-km fiber. The phase jitter of the transmission was reduced from more than 41 ps to less than 1.17 ps.