应用Mathieu函数求解深度渐变椭圆等深形式的波场变化

C. Bender, R. Dean
{"title":"应用Mathieu函数求解深度渐变椭圆等深形式的波场变化","authors":"C. Bender, R. Dean","doi":"10.2174/1874835X01104010044","DOIUrl":null,"url":null,"abstract":"This paper presents and demonstrates a method to determine wave field modifications resulting from elliptic bathymetric anomalies (pit or shoal) with gradual transitions in depth. The analytic (semi-numerical) method is valid for linear waves in a uniform depth domain with an arbitrary number of concentric elliptic forms of different, but uniform, depths combined to represent either a pit or a shoal. Sections present the theory, formulation, and results in the form of contour plots of the relative amplitude in the presence of the depth anomaly. The elliptic forms in the model induce wave transformation through processes of wave refraction, wave diffraction, and wave reflection with asymmetry in the solution for oblique incident wave angles. The results investigate the effect of the incident wave angle on the resulting wave field.","PeriodicalId":206173,"journal":{"name":"The Open Ocean Engineering Journal","volume":"340 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Mathieu Functions to Solve Wave Field Changes by Elliptic Bathymetric Forms with Gradual Depth Transitions\",\"authors\":\"C. Bender, R. Dean\",\"doi\":\"10.2174/1874835X01104010044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents and demonstrates a method to determine wave field modifications resulting from elliptic bathymetric anomalies (pit or shoal) with gradual transitions in depth. The analytic (semi-numerical) method is valid for linear waves in a uniform depth domain with an arbitrary number of concentric elliptic forms of different, but uniform, depths combined to represent either a pit or a shoal. Sections present the theory, formulation, and results in the form of contour plots of the relative amplitude in the presence of the depth anomaly. The elliptic forms in the model induce wave transformation through processes of wave refraction, wave diffraction, and wave reflection with asymmetry in the solution for oblique incident wave angles. The results investigate the effect of the incident wave angle on the resulting wave field.\",\"PeriodicalId\":206173,\"journal\":{\"name\":\"The Open Ocean Engineering Journal\",\"volume\":\"340 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Ocean Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874835X01104010044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Ocean Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874835X01104010044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出并演示了一种确定由深度逐渐变化的椭圆水深异常(坑或滩)引起的波场变化的方法。解析(半数值)方法适用于线性波在均匀深度域中的任意数量的不同但均匀深度的同心椭圆形式组合来表示坑或滩。各节以存在深度异常的相对振幅等高线图的形式介绍了理论、公式和结果。模型中的椭圆形式在斜入射角解中通过波的折射、波的衍射和波的反射等不对称过程诱导波的变换。研究了入射波角对所得波场的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Mathieu Functions to Solve Wave Field Changes by Elliptic Bathymetric Forms with Gradual Depth Transitions
This paper presents and demonstrates a method to determine wave field modifications resulting from elliptic bathymetric anomalies (pit or shoal) with gradual transitions in depth. The analytic (semi-numerical) method is valid for linear waves in a uniform depth domain with an arbitrary number of concentric elliptic forms of different, but uniform, depths combined to represent either a pit or a shoal. Sections present the theory, formulation, and results in the form of contour plots of the relative amplitude in the presence of the depth anomaly. The elliptic forms in the model induce wave transformation through processes of wave refraction, wave diffraction, and wave reflection with asymmetry in the solution for oblique incident wave angles. The results investigate the effect of the incident wave angle on the resulting wave field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信