预测毒理学中改进有效分类的数据驱动方法

D. Neagu, G. Guo
{"title":"预测毒理学中改进有效分类的数据驱动方法","authors":"D. Neagu, G. Guo","doi":"10.1109/ICCCYB.2006.305708","DOIUrl":null,"url":null,"abstract":"Effective multi-class classification for complex data in real-life problems is an open-ended challenge. Prediction of toxic effects of chemical compounds based on experiments involving animals and human beings is very expensive in terms of time, social and financial cost. Therefore it is vital to make use of all available information obtained from experiments and build up a more effective hybrid classification/prediction system to incorporate any available useful piece of knowledge for initial in silico toxicity validation. The paper proposes a correlative data-oriented fusion algorithm to develop effective models based on multi- source data for classification applied to predictive toxicology. Traditionally hybrid intelligent systems integrate just models build on individual data sets by some sort of voting algorithms. We propose an algorithm to generate improved classifiers by use of correlative information of chemical compounds on different endpoints for effective classification.","PeriodicalId":160588,"journal":{"name":"2006 IEEE International Conference on Computational Cybernetics","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Data-Driven Approach for Improved Effective Classification in Predictive Toxicology\",\"authors\":\"D. Neagu, G. Guo\",\"doi\":\"10.1109/ICCCYB.2006.305708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective multi-class classification for complex data in real-life problems is an open-ended challenge. Prediction of toxic effects of chemical compounds based on experiments involving animals and human beings is very expensive in terms of time, social and financial cost. Therefore it is vital to make use of all available information obtained from experiments and build up a more effective hybrid classification/prediction system to incorporate any available useful piece of knowledge for initial in silico toxicity validation. The paper proposes a correlative data-oriented fusion algorithm to develop effective models based on multi- source data for classification applied to predictive toxicology. Traditionally hybrid intelligent systems integrate just models build on individual data sets by some sort of voting algorithms. We propose an algorithm to generate improved classifiers by use of correlative information of chemical compounds on different endpoints for effective classification.\",\"PeriodicalId\":160588,\"journal\":{\"name\":\"2006 IEEE International Conference on Computational Cybernetics\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Computational Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCYB.2006.305708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Computational Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCYB.2006.305708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对现实问题中的复杂数据进行有效的多类分类是一个开放式的挑战。在涉及动物和人类的实验基础上预测化合物的毒性作用在时间、社会和财政成本方面是非常昂贵的。因此,至关重要的是利用从实验中获得的所有可用信息,并建立一个更有效的混合分类/预测系统,以纳入任何可用的有用知识,用于初始硅毒性验证。本文提出了一种基于多源数据的相关数据融合算法,以建立有效的模型用于预测毒理学分类。传统的混合智能系统通过某种投票算法集成了建立在单个数据集上的模型。提出了一种利用不同端点上化合物的相关信息生成改进分类器的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Data-Driven Approach for Improved Effective Classification in Predictive Toxicology
Effective multi-class classification for complex data in real-life problems is an open-ended challenge. Prediction of toxic effects of chemical compounds based on experiments involving animals and human beings is very expensive in terms of time, social and financial cost. Therefore it is vital to make use of all available information obtained from experiments and build up a more effective hybrid classification/prediction system to incorporate any available useful piece of knowledge for initial in silico toxicity validation. The paper proposes a correlative data-oriented fusion algorithm to develop effective models based on multi- source data for classification applied to predictive toxicology. Traditionally hybrid intelligent systems integrate just models build on individual data sets by some sort of voting algorithms. We propose an algorithm to generate improved classifiers by use of correlative information of chemical compounds on different endpoints for effective classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信