Jiamei Wei, Shen Wang, Jianguo Wu, Dong Cao and Daojian Cheng
{"title":"直接合成过氧化氢的钯基催化剂研究进展与展望","authors":"Jiamei Wei, Shen Wang, Jianguo Wu, Dong Cao and Daojian Cheng","doi":"10.1039/D3IM00054K","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) is a green oxidant that has been widely used. The direct synthesis of hydrogen peroxide (DSHP) offers significant advantages in terms of high atomic economy and environmentally friendly effects. However, due to the inevitable side reactions and severe mass transfer limitations, it is still challenging to balance the selectivity and activity for the DSHP. Combining theoretical understanding with the controllable synthesis of nanocatalysts may significantly facilitate the design of “dream catalysts” for the DSHP. In this work, the main factors affecting the reaction performance of catalysts and the active sites of catalysts have been reviewed and discussed in detail. The development and design of catalysts with high efficiency were introduced from three aspects: the catalyst support, active component and atomic impurity. In addition, the coupling of DSHP and other oxidation reactions to realize one-pot <em>in situ</em> oxidation reactions was comprehensively emphasized, which showed essential guiding significance for the future development of H<small><sub>2</sub></small>O<small><sub>2</sub></small>.</p><p>Keywords: Direct synthesis of H<small><sub>2</sub></small>O<small><sub>2</sub></small>; Pd-based catalyst; Selectivity and activity; Catalytic mechanism; <em>In situ</em> oxidation reactions.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 1","pages":" 7-29"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00054k?page=search","citationCount":"0","resultStr":"{\"title\":\"Progress and perspectives of Pd-based catalysts for direct synthesis of hydrogen peroxide\",\"authors\":\"Jiamei Wei, Shen Wang, Jianguo Wu, Dong Cao and Daojian Cheng\",\"doi\":\"10.1039/D3IM00054K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) is a green oxidant that has been widely used. The direct synthesis of hydrogen peroxide (DSHP) offers significant advantages in terms of high atomic economy and environmentally friendly effects. However, due to the inevitable side reactions and severe mass transfer limitations, it is still challenging to balance the selectivity and activity for the DSHP. Combining theoretical understanding with the controllable synthesis of nanocatalysts may significantly facilitate the design of “dream catalysts” for the DSHP. In this work, the main factors affecting the reaction performance of catalysts and the active sites of catalysts have been reviewed and discussed in detail. The development and design of catalysts with high efficiency were introduced from three aspects: the catalyst support, active component and atomic impurity. In addition, the coupling of DSHP and other oxidation reactions to realize one-pot <em>in situ</em> oxidation reactions was comprehensively emphasized, which showed essential guiding significance for the future development of H<small><sub>2</sub></small>O<small><sub>2</sub></small>.</p><p>Keywords: Direct synthesis of H<small><sub>2</sub></small>O<small><sub>2</sub></small>; Pd-based catalyst; Selectivity and activity; Catalytic mechanism; <em>In situ</em> oxidation reactions.</p>\",\"PeriodicalId\":29808,\"journal\":{\"name\":\"Industrial Chemistry & Materials\",\"volume\":\" 1\",\"pages\":\" 7-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00054k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Chemistry & Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/im/d3im00054k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/im/d3im00054k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Progress and perspectives of Pd-based catalysts for direct synthesis of hydrogen peroxide
Hydrogen peroxide (H2O2) is a green oxidant that has been widely used. The direct synthesis of hydrogen peroxide (DSHP) offers significant advantages in terms of high atomic economy and environmentally friendly effects. However, due to the inevitable side reactions and severe mass transfer limitations, it is still challenging to balance the selectivity and activity for the DSHP. Combining theoretical understanding with the controllable synthesis of nanocatalysts may significantly facilitate the design of “dream catalysts” for the DSHP. In this work, the main factors affecting the reaction performance of catalysts and the active sites of catalysts have been reviewed and discussed in detail. The development and design of catalysts with high efficiency were introduced from three aspects: the catalyst support, active component and atomic impurity. In addition, the coupling of DSHP and other oxidation reactions to realize one-pot in situ oxidation reactions was comprehensively emphasized, which showed essential guiding significance for the future development of H2O2.
Keywords: Direct synthesis of H2O2; Pd-based catalyst; Selectivity and activity; Catalytic mechanism; In situ oxidation reactions.
期刊介绍:
Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated.
The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale.
Industrial Chemistry & Materials publishes:
● Communications
● Full papers
● Minireviews
● Reviews
● Perspectives
● Comments