高性能存储电路中嵌入式混合单元的新设计

F. Lombardi, Wei Wei, K. Namba
{"title":"高性能存储电路中嵌入式混合单元的新设计","authors":"F. Lombardi, Wei Wei, K. Namba","doi":"10.1145/2742060.2742103","DOIUrl":null,"url":null,"abstract":"Memory design has radically changed in the last few years; the emergence of new technologies has further improved performance and the traditional separation of storage levels between Static Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM) is not viable as in the past. Recently, the embedded DRAM (eDRAM) has been proposed for cache utilization to improve density while attempting to retain high performance operations; this scheme is often referred as hybrid due to the utilization of different technologies in a memory. In this paper, a hybrid scheme is proposed by adding non-volatile features and related circuits to the SRAM/eDRAM; an Oxide Resistive Random Access Memory (RRAM) is utilized as non-volatile storage in the embedded memory circuit. Different memory cells are proposed in this manuscript; they are evaluated with respect to circuit-level figures of merit as related to operational features (read, write, static noise margin, power delay product) as well as tolerance to event upsets (critical charge) and variations. Extensive simulation results using nanometric PTMs are provided. It is shown that the proposed designs offer substantial improvements over previous hybrid cells as well as a conventional NAND Flash memory cell.","PeriodicalId":255133,"journal":{"name":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel Designs of Embedded Hybrid Cells for High Performance Memory Circuits\",\"authors\":\"F. Lombardi, Wei Wei, K. Namba\",\"doi\":\"10.1145/2742060.2742103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memory design has radically changed in the last few years; the emergence of new technologies has further improved performance and the traditional separation of storage levels between Static Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM) is not viable as in the past. Recently, the embedded DRAM (eDRAM) has been proposed for cache utilization to improve density while attempting to retain high performance operations; this scheme is often referred as hybrid due to the utilization of different technologies in a memory. In this paper, a hybrid scheme is proposed by adding non-volatile features and related circuits to the SRAM/eDRAM; an Oxide Resistive Random Access Memory (RRAM) is utilized as non-volatile storage in the embedded memory circuit. Different memory cells are proposed in this manuscript; they are evaluated with respect to circuit-level figures of merit as related to operational features (read, write, static noise margin, power delay product) as well as tolerance to event upsets (critical charge) and variations. Extensive simulation results using nanometric PTMs are provided. It is shown that the proposed designs offer substantial improvements over previous hybrid cells as well as a conventional NAND Flash memory cell.\",\"PeriodicalId\":255133,\"journal\":{\"name\":\"Proceedings of the 25th edition on Great Lakes Symposium on VLSI\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th edition on Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2742060.2742103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742060.2742103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过去的几年里,内存设计发生了根本性的变化;新技术的出现进一步提高了性能,传统的静态随机存取存储器(SRAM)和动态随机存取存储器(DRAM)之间的存储级别分离已不像过去那样可行。最近,嵌入式DRAM (eDRAM)被提出用于缓存利用,以提高密度,同时试图保持高性能操作;由于在内存中使用了不同的技术,这种方案通常被称为混合方案。本文提出了在SRAM/eDRAM中加入非易失性特性和相关电路的混合方案;氧化物电阻随机存取存储器(RRAM)被用作嵌入式存储器电路中的非易失性存储器。本文提出了不同的记忆细胞;它们是根据与操作特性(读、写、静态噪声裕度、功率延迟产品)以及对事件扰动(临界电荷)和变化的容忍度相关的电路级数值进行评估的。使用纳米ptm提供了广泛的模拟结果。结果表明,与以前的混合电池以及传统的NAND闪存电池相比,所提出的设计提供了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Designs of Embedded Hybrid Cells for High Performance Memory Circuits
Memory design has radically changed in the last few years; the emergence of new technologies has further improved performance and the traditional separation of storage levels between Static Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM) is not viable as in the past. Recently, the embedded DRAM (eDRAM) has been proposed for cache utilization to improve density while attempting to retain high performance operations; this scheme is often referred as hybrid due to the utilization of different technologies in a memory. In this paper, a hybrid scheme is proposed by adding non-volatile features and related circuits to the SRAM/eDRAM; an Oxide Resistive Random Access Memory (RRAM) is utilized as non-volatile storage in the embedded memory circuit. Different memory cells are proposed in this manuscript; they are evaluated with respect to circuit-level figures of merit as related to operational features (read, write, static noise margin, power delay product) as well as tolerance to event upsets (critical charge) and variations. Extensive simulation results using nanometric PTMs are provided. It is shown that the proposed designs offer substantial improvements over previous hybrid cells as well as a conventional NAND Flash memory cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信