与毫米雷达图像匹配的制图

S. Moss, E. Hancock
{"title":"与毫米雷达图像匹配的制图","authors":"S. Moss, E. Hancock","doi":"10.1109/ACV.1996.572003","DOIUrl":null,"url":null,"abstract":"This paper describes an application of the EM (expectation and maximisation) algorithm to the registration of incomplete millimetric radar images. The data used in this study consists of a series of nonoverlapping radar sweeps. Our registration process aims to recover transformation parameters between the radar-data and a digital map. The tokens used in the matching process are fragmented line-segments extracted from the radar images which predominantly correspond to hedge-rows in the cartographic data. The EM technique models data uncertainty using Gaussian mixtures defined over the positions and orientations of the lines. The resulting weighted least-squares parameter estimation problem is solved using the Levenberg-Marquardt method. A sensitivity analysis reveals that the date-likelihood function is unimodal in the translation and scale parameters. In-fact the algorithm is only sensitive to the choice of initial rotation parameter; this is attributable to local suboptima in the log-likelihood function associated with /spl pi//3 orientation ambiguities in the map. The method is also demonstrated to be relatively insensitive to random measurement errors on the line-segments.","PeriodicalId":222106,"journal":{"name":"Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cartographic matching with millimetre radar images\",\"authors\":\"S. Moss, E. Hancock\",\"doi\":\"10.1109/ACV.1996.572003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an application of the EM (expectation and maximisation) algorithm to the registration of incomplete millimetric radar images. The data used in this study consists of a series of nonoverlapping radar sweeps. Our registration process aims to recover transformation parameters between the radar-data and a digital map. The tokens used in the matching process are fragmented line-segments extracted from the radar images which predominantly correspond to hedge-rows in the cartographic data. The EM technique models data uncertainty using Gaussian mixtures defined over the positions and orientations of the lines. The resulting weighted least-squares parameter estimation problem is solved using the Levenberg-Marquardt method. A sensitivity analysis reveals that the date-likelihood function is unimodal in the translation and scale parameters. In-fact the algorithm is only sensitive to the choice of initial rotation parameter; this is attributable to local suboptima in the log-likelihood function associated with /spl pi//3 orientation ambiguities in the map. The method is also demonstrated to be relatively insensitive to random measurement errors on the line-segments.\",\"PeriodicalId\":222106,\"journal\":{\"name\":\"Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACV.1996.572003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACV.1996.572003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了EM(期望和最大化)算法在不完全毫米雷达图像配准中的应用。本研究中使用的数据由一系列不重叠的雷达扫描组成。我们的配准过程旨在恢复雷达数据与数字地图之间的转换参数。在匹配过程中使用的标记是从雷达图像中提取的碎片线段,这些线段主要对应于地图数据中的对冲行。EM技术使用高斯混合定义在线的位置和方向上的数据不确定性模型。利用Levenberg-Marquardt方法解决了加权最小二乘参数估计问题。灵敏度分析表明,日期似然函数在平移和尺度参数上是单峰的。实际上,该算法只对初始旋转参数的选择敏感;这是由于与地图中/spl pi//3方向歧义相关的对数似然函数中的局部次优。该方法对线段上的随机测量误差相对不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cartographic matching with millimetre radar images
This paper describes an application of the EM (expectation and maximisation) algorithm to the registration of incomplete millimetric radar images. The data used in this study consists of a series of nonoverlapping radar sweeps. Our registration process aims to recover transformation parameters between the radar-data and a digital map. The tokens used in the matching process are fragmented line-segments extracted from the radar images which predominantly correspond to hedge-rows in the cartographic data. The EM technique models data uncertainty using Gaussian mixtures defined over the positions and orientations of the lines. The resulting weighted least-squares parameter estimation problem is solved using the Levenberg-Marquardt method. A sensitivity analysis reveals that the date-likelihood function is unimodal in the translation and scale parameters. In-fact the algorithm is only sensitive to the choice of initial rotation parameter; this is attributable to local suboptima in the log-likelihood function associated with /spl pi//3 orientation ambiguities in the map. The method is also demonstrated to be relatively insensitive to random measurement errors on the line-segments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信