基于双流CNN-GRU模型的FMCW雷达手势识别

Keivan Alirezazad, Linus Maurer
{"title":"基于双流CNN-GRU模型的FMCW雷达手势识别","authors":"Keivan Alirezazad, Linus Maurer","doi":"10.23919/mikon54314.2022.9924984","DOIUrl":null,"url":null,"abstract":"Data derived from mmWave radars, such as frequency modulated continuous wave (FMCW) radars, contains distinctive movement-based features that characterize each gesture uniquely and facilitate contactless human hand gesture recognition. This paper aims to use an advanced 77-GHz multiple-input-multiple-output (MIMO) FMCW radar with a deep-learning model to automate the extraction of these unique features. We forward this radar’s pre-processed range-Doppler and range-angle images (RDIs and RAIs) into a dual-stream artificial neural network to classify human hand gestures. The proposed multiple-input, single-output architecture comprises 2D convolutional neural network-gated recurrent units (2D CNNGRU). According to the conducted experiments, the average accuracy of the proposed classification model with 8-fold cross-validation achieves 92.50%.","PeriodicalId":177285,"journal":{"name":"2022 24th International Microwave and Radar Conference (MIKON)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"FMCW Radar-Based Hand Gesture Recognition Using Dual-Stream CNN-GRU Model\",\"authors\":\"Keivan Alirezazad, Linus Maurer\",\"doi\":\"10.23919/mikon54314.2022.9924984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data derived from mmWave radars, such as frequency modulated continuous wave (FMCW) radars, contains distinctive movement-based features that characterize each gesture uniquely and facilitate contactless human hand gesture recognition. This paper aims to use an advanced 77-GHz multiple-input-multiple-output (MIMO) FMCW radar with a deep-learning model to automate the extraction of these unique features. We forward this radar’s pre-processed range-Doppler and range-angle images (RDIs and RAIs) into a dual-stream artificial neural network to classify human hand gestures. The proposed multiple-input, single-output architecture comprises 2D convolutional neural network-gated recurrent units (2D CNNGRU). According to the conducted experiments, the average accuracy of the proposed classification model with 8-fold cross-validation achieves 92.50%.\",\"PeriodicalId\":177285,\"journal\":{\"name\":\"2022 24th International Microwave and Radar Conference (MIKON)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 24th International Microwave and Radar Conference (MIKON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/mikon54314.2022.9924984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Microwave and Radar Conference (MIKON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/mikon54314.2022.9924984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

来自毫米波雷达的数据,如调频连续波(FMCW)雷达,包含独特的基于运动的特征,可以独特地表征每个手势,并促进非接触式人类手势识别。本文旨在使用先进的77 ghz多输入多输出(MIMO) FMCW雷达与深度学习模型来自动提取这些独特特征。我们将该雷达的预处理距离-多普勒和距离-角度图像(RDIs和RAIs)转发到双流人工神经网络中,以对人类手势进行分类。所提出的多输入、单输出架构包括二维卷积神经网络门控循环单元(2D CNNGRU)。实验结果表明,经过8次交叉验证,所提出的分类模型的平均准确率达到92.50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FMCW Radar-Based Hand Gesture Recognition Using Dual-Stream CNN-GRU Model
Data derived from mmWave radars, such as frequency modulated continuous wave (FMCW) radars, contains distinctive movement-based features that characterize each gesture uniquely and facilitate contactless human hand gesture recognition. This paper aims to use an advanced 77-GHz multiple-input-multiple-output (MIMO) FMCW radar with a deep-learning model to automate the extraction of these unique features. We forward this radar’s pre-processed range-Doppler and range-angle images (RDIs and RAIs) into a dual-stream artificial neural network to classify human hand gestures. The proposed multiple-input, single-output architecture comprises 2D convolutional neural network-gated recurrent units (2D CNNGRU). According to the conducted experiments, the average accuracy of the proposed classification model with 8-fold cross-validation achieves 92.50%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信