基于核密度稀疏回归的模拟集成电路高效性能建模

Chenlei Fang, Qicheng Huang, Fan Yang, Xuan Zeng, Dian Zhou, Xin Li
{"title":"基于核密度稀疏回归的模拟集成电路高效性能建模","authors":"Chenlei Fang, Qicheng Huang, Fan Yang, Xuan Zeng, Dian Zhou, Xin Li","doi":"10.1145/2897937.2898013","DOIUrl":null,"url":null,"abstract":"With the aggressive scaling of integrated circuit technology, analog performance modeling is facing enormous challenges due to high-dimensional variation space and expensive transistor-level simulation. In this paper, we propose a kernel density based sparse regression algorithm (KDSR) to accurately fit analog performance models where the modeling error is not simply Gaussian due to strong nonlinearity. The key idea of KDSR is to approximate the non-Gaussian likelihood function by using non-parametric kernel density estimation. Furthermore, we adopt Laplace distribution as our prior knowledge to enforce a sparse pattern for model coefficients. The unknown model coefficients are finally determined by using an EM type algorithm for maximum-a-posteriori (MAP) estimation. Our proposed method can be viewed as an iterative and weighted sparse regression algorithm that aims to reduce the estimation bias for model coefficients due to outliers. Our experimental results demonstrate that our proposed KDSR method can achieve superior accuracy over the conventional sparse regression method.","PeriodicalId":185271,"journal":{"name":"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient performance modeling of analog integrated circuits via kernel density based sparse regression\",\"authors\":\"Chenlei Fang, Qicheng Huang, Fan Yang, Xuan Zeng, Dian Zhou, Xin Li\",\"doi\":\"10.1145/2897937.2898013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the aggressive scaling of integrated circuit technology, analog performance modeling is facing enormous challenges due to high-dimensional variation space and expensive transistor-level simulation. In this paper, we propose a kernel density based sparse regression algorithm (KDSR) to accurately fit analog performance models where the modeling error is not simply Gaussian due to strong nonlinearity. The key idea of KDSR is to approximate the non-Gaussian likelihood function by using non-parametric kernel density estimation. Furthermore, we adopt Laplace distribution as our prior knowledge to enforce a sparse pattern for model coefficients. The unknown model coefficients are finally determined by using an EM type algorithm for maximum-a-posteriori (MAP) estimation. Our proposed method can be viewed as an iterative and weighted sparse regression algorithm that aims to reduce the estimation bias for model coefficients due to outliers. Our experimental results demonstrate that our proposed KDSR method can achieve superior accuracy over the conventional sparse regression method.\",\"PeriodicalId\":185271,\"journal\":{\"name\":\"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897937.2898013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897937.2898013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着集成电路技术的迅猛发展,由于高维变化空间和昂贵的晶体管级仿真,模拟性能建模面临着巨大的挑战。在本文中,我们提出了一种基于核密度的稀疏回归算法(KDSR)来精确拟合模拟性能模型,其中由于强非线性,建模误差不是简单的高斯。KDSR的核心思想是利用非参数核密度估计近似非高斯似然函数。此外,我们采用拉普拉斯分布作为我们的先验知识来强制模型系数的稀疏模式。最后利用EM型最大后验估计算法确定未知模型系数。我们提出的方法可以看作是一种迭代加权稀疏回归算法,旨在减少因离群值而导致的模型系数估计偏差。实验结果表明,本文提出的KDSR方法比传统的稀疏回归方法具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient performance modeling of analog integrated circuits via kernel density based sparse regression
With the aggressive scaling of integrated circuit technology, analog performance modeling is facing enormous challenges due to high-dimensional variation space and expensive transistor-level simulation. In this paper, we propose a kernel density based sparse regression algorithm (KDSR) to accurately fit analog performance models where the modeling error is not simply Gaussian due to strong nonlinearity. The key idea of KDSR is to approximate the non-Gaussian likelihood function by using non-parametric kernel density estimation. Furthermore, we adopt Laplace distribution as our prior knowledge to enforce a sparse pattern for model coefficients. The unknown model coefficients are finally determined by using an EM type algorithm for maximum-a-posteriori (MAP) estimation. Our proposed method can be viewed as an iterative and weighted sparse regression algorithm that aims to reduce the estimation bias for model coefficients due to outliers. Our experimental results demonstrate that our proposed KDSR method can achieve superior accuracy over the conventional sparse regression method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信