低相对速度相关性的角矩分析

P. Danielewicz, Scott Pratt
{"title":"低相对速度相关性的角矩分析","authors":"P. Danielewicz, Scott Pratt","doi":"10.1556/APH.25.2006.2-4.12","DOIUrl":null,"url":null,"abstract":"For analyzing anisotropic low relative-velocity correlation-functions and the associated emission sources, we propose an expansion in terms of cartesian spherical harmonics. The expansion coefficients represent angular moments of the investigated functions. The respective coefficients for the correlation and source are directly related to each other via one-dimensional integral transforms. The shape features of the source may be partly read off from the respective features of the correlation function and can be, otherwise, imaged.","PeriodicalId":201208,"journal":{"name":"Acta Physica Hungarica A) Heavy Ion Physics","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Angular moment analysis of low relative velocity correlations\",\"authors\":\"P. Danielewicz, Scott Pratt\",\"doi\":\"10.1556/APH.25.2006.2-4.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For analyzing anisotropic low relative-velocity correlation-functions and the associated emission sources, we propose an expansion in terms of cartesian spherical harmonics. The expansion coefficients represent angular moments of the investigated functions. The respective coefficients for the correlation and source are directly related to each other via one-dimensional integral transforms. The shape features of the source may be partly read off from the respective features of the correlation function and can be, otherwise, imaged.\",\"PeriodicalId\":201208,\"journal\":{\"name\":\"Acta Physica Hungarica A) Heavy Ion Physics\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Hungarica A) Heavy Ion Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/APH.25.2006.2-4.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Hungarica A) Heavy Ion Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/APH.25.2006.2-4.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了分析各向异性低相对速度相关函数和相关的发射源,我们提出了笛卡儿球谐的展开。膨胀系数表示所研究函数的角矩。通过一维积分变换,相关系数和源系数彼此直接相关。源的形状特征可以部分地从相关函数的各自特征中读出,否则可以成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Angular moment analysis of low relative velocity correlations
For analyzing anisotropic low relative-velocity correlation-functions and the associated emission sources, we propose an expansion in terms of cartesian spherical harmonics. The expansion coefficients represent angular moments of the investigated functions. The respective coefficients for the correlation and source are directly related to each other via one-dimensional integral transforms. The shape features of the source may be partly read off from the respective features of the correlation function and can be, otherwise, imaged.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信