一种解决数据稀疏性的混合协同过滤推荐算法

Ying He, Shaoyu Yang, Chenbin Jiao
{"title":"一种解决数据稀疏性的混合协同过滤推荐算法","authors":"Ying He, Shaoyu Yang, Chenbin Jiao","doi":"10.1109/ISCCS.2011.40","DOIUrl":null,"url":null,"abstract":"with the huge electronic data's explosion in the commercial and the service area, the collaborative filtering technology attracts many of researchers' attention. In this paper, we provide a hybrid collaborative filtering recommendation algorithm, which based on the research and analyses for the data sparsity and the similarity accuracy. The simulation result indicates that the algorism can solve effectively the extreme data sparsity and promote the similarity accuracy in collaborative filtering.","PeriodicalId":326328,"journal":{"name":"2011 International Symposium on Computer Science and Society","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Hybrid Collaborative Filtering Recommendation Algorithm for Solving the Data Sparsity\",\"authors\":\"Ying He, Shaoyu Yang, Chenbin Jiao\",\"doi\":\"10.1109/ISCCS.2011.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"with the huge electronic data's explosion in the commercial and the service area, the collaborative filtering technology attracts many of researchers' attention. In this paper, we provide a hybrid collaborative filtering recommendation algorithm, which based on the research and analyses for the data sparsity and the similarity accuracy. The simulation result indicates that the algorism can solve effectively the extreme data sparsity and promote the similarity accuracy in collaborative filtering.\",\"PeriodicalId\":326328,\"journal\":{\"name\":\"2011 International Symposium on Computer Science and Society\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Symposium on Computer Science and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCCS.2011.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Symposium on Computer Science and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCCS.2011.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着海量电子数据在商业和服务领域的爆炸式增长,协同过滤技术引起了众多研究者的关注。本文在研究分析数据稀疏性和相似度精度的基础上,提出了一种混合协同过滤推荐算法。仿真结果表明,该算法能有效地解决协同过滤中的极端数据稀疏性问题,提高相似度精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Collaborative Filtering Recommendation Algorithm for Solving the Data Sparsity
with the huge electronic data's explosion in the commercial and the service area, the collaborative filtering technology attracts many of researchers' attention. In this paper, we provide a hybrid collaborative filtering recommendation algorithm, which based on the research and analyses for the data sparsity and the similarity accuracy. The simulation result indicates that the algorism can solve effectively the extreme data sparsity and promote the similarity accuracy in collaborative filtering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信