Chun-Yuan Cheng, Jinn-Shyan Wang, Pei-Yuan Chou, Shiou-Ching Chen, C. Sun, Yuan-Hua Chu, Tzu-Yi Yang
{"title":"一个3mhz -1.8 GHz 94 μ w -9.5 mW 0.0153-mm2的65nm CMOS全数字延时锁相环","authors":"Chun-Yuan Cheng, Jinn-Shyan Wang, Pei-Yuan Chou, Shiou-Ching Chen, C. Sun, Yuan-Hua Chu, Tzu-Yi Yang","doi":"10.1109/ASSCC.2014.7008935","DOIUrl":null,"url":null,"abstract":"It is challenging to design a closed-loop all-digital delay-locked loop (ADDLL) that also has a small area, low power, and fast locking for a wide frequency range operation. In this work a cyclic half-delay-line architecture with the same type of delay lines for cyclic delay deduction and coarse locking is proposed to achieve the design goals of small area and fast locking for a wide frequency range operation. In addition to clock gating, which is used to reduce power consumption in the lock-in state regardless of the clock frequency, automatic bypassing of the cyclic operation is developed to reduce power consumption for high-frequency operations. Based on these proposed techniques, a 3 MHz-to-1.8 GHz 94 μW-to-9.5 mW 0.0153-mm2 closed-loop ADDLL is realized in 65-nm CMOS.","PeriodicalId":161031,"journal":{"name":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"153 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 3 MHz-to-1.8 GHz 94 μW-to-9.5 mW 0.0153-mm2 all-digital delay-locked loop in 65-nm CMOS\",\"authors\":\"Chun-Yuan Cheng, Jinn-Shyan Wang, Pei-Yuan Chou, Shiou-Ching Chen, C. Sun, Yuan-Hua Chu, Tzu-Yi Yang\",\"doi\":\"10.1109/ASSCC.2014.7008935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is challenging to design a closed-loop all-digital delay-locked loop (ADDLL) that also has a small area, low power, and fast locking for a wide frequency range operation. In this work a cyclic half-delay-line architecture with the same type of delay lines for cyclic delay deduction and coarse locking is proposed to achieve the design goals of small area and fast locking for a wide frequency range operation. In addition to clock gating, which is used to reduce power consumption in the lock-in state regardless of the clock frequency, automatic bypassing of the cyclic operation is developed to reduce power consumption for high-frequency operations. Based on these proposed techniques, a 3 MHz-to-1.8 GHz 94 μW-to-9.5 mW 0.0153-mm2 closed-loop ADDLL is realized in 65-nm CMOS.\",\"PeriodicalId\":161031,\"journal\":{\"name\":\"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"volume\":\"153 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2014.7008935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2014.7008935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 3 MHz-to-1.8 GHz 94 μW-to-9.5 mW 0.0153-mm2 all-digital delay-locked loop in 65-nm CMOS
It is challenging to design a closed-loop all-digital delay-locked loop (ADDLL) that also has a small area, low power, and fast locking for a wide frequency range operation. In this work a cyclic half-delay-line architecture with the same type of delay lines for cyclic delay deduction and coarse locking is proposed to achieve the design goals of small area and fast locking for a wide frequency range operation. In addition to clock gating, which is used to reduce power consumption in the lock-in state regardless of the clock frequency, automatic bypassing of the cyclic operation is developed to reduce power consumption for high-frequency operations. Based on these proposed techniques, a 3 MHz-to-1.8 GHz 94 μW-to-9.5 mW 0.0153-mm2 closed-loop ADDLL is realized in 65-nm CMOS.