UC-PHOTON:一种用于多种用例应用的新型混合光子片上网络

Shirish Bahirat, S. Pasricha
{"title":"UC-PHOTON:一种用于多种用例应用的新型混合光子片上网络","authors":"Shirish Bahirat, S. Pasricha","doi":"10.1109/ISQED.2010.5450500","DOIUrl":null,"url":null,"abstract":"Multiple use-case chip multiprocessor (CMP) applications require adaptive on-chip communication fabrics to cope with changing use-case performance needs. Networks-on-chip (NoC) have recently gained popularity as scalable and adaptive on-chip communication fabrics, but suffer from prohibitive power dissipation. In this paper we propose UCPHOTON, a novel hybrid photonic NoC communication architecture optimized to cope with the variable bandwidth and latency constraints of multiple use-case applications implemented on CMPs. Our detailed experimental results indicate that UC-PHOTON can effectively adapt to meet diverse use-case traffic requirements and optimize energy-delay product and power dissipation, with scaling CMP core count and multiple use-case complexity. For the five multiple use-case applications explored in this work, UC-PHOTON shows up to 46× reduction in power dissipation and up to 170× reduction in energy-delay product compared to traditional electrical NoC fabrics, highlighting the benefits of using the novel communication fabric.","PeriodicalId":369046,"journal":{"name":"2010 11th International Symposium on Quality Electronic Design (ISQED)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"UC-PHOTON: A novel hybrid photonic network-on-chip for multiple use-case applications\",\"authors\":\"Shirish Bahirat, S. Pasricha\",\"doi\":\"10.1109/ISQED.2010.5450500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple use-case chip multiprocessor (CMP) applications require adaptive on-chip communication fabrics to cope with changing use-case performance needs. Networks-on-chip (NoC) have recently gained popularity as scalable and adaptive on-chip communication fabrics, but suffer from prohibitive power dissipation. In this paper we propose UCPHOTON, a novel hybrid photonic NoC communication architecture optimized to cope with the variable bandwidth and latency constraints of multiple use-case applications implemented on CMPs. Our detailed experimental results indicate that UC-PHOTON can effectively adapt to meet diverse use-case traffic requirements and optimize energy-delay product and power dissipation, with scaling CMP core count and multiple use-case complexity. For the five multiple use-case applications explored in this work, UC-PHOTON shows up to 46× reduction in power dissipation and up to 170× reduction in energy-delay product compared to traditional electrical NoC fabrics, highlighting the benefits of using the novel communication fabric.\",\"PeriodicalId\":369046,\"journal\":{\"name\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2010.5450500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2010.5450500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

多用例芯片多处理器(CMP)应用需要自适应片上通信结构来应对不断变化的用例性能需求。片上网络(NoC)最近作为可扩展和自适应的片上通信结构而受到欢迎,但其功耗过高。在本文中,我们提出了一种新的混合光子NoC通信架构UCPHOTON,该架构经过优化,可以应对在cmp上实现的多用例应用的可变带宽和延迟限制。详细的实验结果表明,UC-PHOTON可以有效地适应不同的用例流量需求,优化能量延迟产品和功耗,具有可缩放的CMP核数和多用例复杂度。对于本研究中探索的五个多用例应用,与传统的电气NoC织物相比,UC-PHOTON显示出高达46倍的功耗降低和高达170倍的能量延迟产品减少,突出了使用新型通信织物的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UC-PHOTON: A novel hybrid photonic network-on-chip for multiple use-case applications
Multiple use-case chip multiprocessor (CMP) applications require adaptive on-chip communication fabrics to cope with changing use-case performance needs. Networks-on-chip (NoC) have recently gained popularity as scalable and adaptive on-chip communication fabrics, but suffer from prohibitive power dissipation. In this paper we propose UCPHOTON, a novel hybrid photonic NoC communication architecture optimized to cope with the variable bandwidth and latency constraints of multiple use-case applications implemented on CMPs. Our detailed experimental results indicate that UC-PHOTON can effectively adapt to meet diverse use-case traffic requirements and optimize energy-delay product and power dissipation, with scaling CMP core count and multiple use-case complexity. For the five multiple use-case applications explored in this work, UC-PHOTON shows up to 46× reduction in power dissipation and up to 170× reduction in energy-delay product compared to traditional electrical NoC fabrics, highlighting the benefits of using the novel communication fabric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信