利用人工神经网络检测多孔硅的空隙密度

Huan Liu, R. Fang, M. Miao, Yufeng Jin
{"title":"利用人工神经网络检测多孔硅的空隙密度","authors":"Huan Liu, R. Fang, M. Miao, Yufeng Jin","doi":"10.1109/ISEMC.2019.8825236","DOIUrl":null,"url":null,"abstract":"3-D integration of integrated circuits based on through silicon via (TSV) could achieve high-performance, multifunctional and heterogeneous microsystem. However, various defects inside TSV may degrade system performance, it is essential to detect these defects for system design and process improvement. In this paper, we propose a defect detection method using artificial neural network (ANN) to detect the volume density of voids in the TSV. Different ANNs are designed and trained, their performance is compared. The results demonstrate the detection method could predict void density accurately.","PeriodicalId":137753,"journal":{"name":"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Void Density in the Through Silicon Via Using Artificial Neural Network\",\"authors\":\"Huan Liu, R. Fang, M. Miao, Yufeng Jin\",\"doi\":\"10.1109/ISEMC.2019.8825236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3-D integration of integrated circuits based on through silicon via (TSV) could achieve high-performance, multifunctional and heterogeneous microsystem. However, various defects inside TSV may degrade system performance, it is essential to detect these defects for system design and process improvement. In this paper, we propose a defect detection method using artificial neural network (ANN) to detect the volume density of voids in the TSV. Different ANNs are designed and trained, their performance is compared. The results demonstrate the detection method could predict void density accurately.\",\"PeriodicalId\":137753,\"journal\":{\"name\":\"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)\",\"volume\":\"211 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEMC.2019.8825236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2019.8825236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于硅通孔(TSV)的集成电路三维集成可以实现高性能、多功能和异构的微系统。然而,TSV内部的各种缺陷可能会降低系统的性能,检测这些缺陷对于系统设计和工艺改进至关重要。在本文中,我们提出了一种利用人工神经网络(ANN)检测TSV中空隙体积密度的缺陷检测方法。设计并训练了不同的人工神经网络,并对其性能进行了比较。结果表明,该检测方法可以准确预测孔隙密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Void Density in the Through Silicon Via Using Artificial Neural Network
3-D integration of integrated circuits based on through silicon via (TSV) could achieve high-performance, multifunctional and heterogeneous microsystem. However, various defects inside TSV may degrade system performance, it is essential to detect these defects for system design and process improvement. In this paper, we propose a defect detection method using artificial neural network (ANN) to detect the volume density of voids in the TSV. Different ANNs are designed and trained, their performance is compared. The results demonstrate the detection method could predict void density accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信