{"title":"基于学习决策树模型的黑箱系统数据驱动测试生成","authors":"Swantje Plambeck, Goerschwin Fey","doi":"10.1109/DDECS57882.2023.10139633","DOIUrl":null,"url":null,"abstract":"Testing of black-box systems is a difficult task, because no prior knowledge on the system is given that can be used for design and evaluation of tests. Learning a model of a black-box system from observations enables model-based testing (MBT). We take a recent approach using decision tree learning to create a model of a black-box system and discuss the usage of such a decision tree model for test generation. In this scope, we define a test coverage metric for decision tree models. Furthermore, we identify different modes of testing and explain that a decision tree model especially facilitates model-based testing for black-box systems with limited controllability of inputs and the inability to reset the system to a specific state. A case study on a discrete system illustrates our MBT approach.","PeriodicalId":220690,"journal":{"name":"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Test Generation for Black-Box Systems From Learned Decision Tree Models\",\"authors\":\"Swantje Plambeck, Goerschwin Fey\",\"doi\":\"10.1109/DDECS57882.2023.10139633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Testing of black-box systems is a difficult task, because no prior knowledge on the system is given that can be used for design and evaluation of tests. Learning a model of a black-box system from observations enables model-based testing (MBT). We take a recent approach using decision tree learning to create a model of a black-box system and discuss the usage of such a decision tree model for test generation. In this scope, we define a test coverage metric for decision tree models. Furthermore, we identify different modes of testing and explain that a decision tree model especially facilitates model-based testing for black-box systems with limited controllability of inputs and the inability to reset the system to a specific state. A case study on a discrete system illustrates our MBT approach.\",\"PeriodicalId\":220690,\"journal\":{\"name\":\"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS57882.2023.10139633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS57882.2023.10139633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-Driven Test Generation for Black-Box Systems From Learned Decision Tree Models
Testing of black-box systems is a difficult task, because no prior knowledge on the system is given that can be used for design and evaluation of tests. Learning a model of a black-box system from observations enables model-based testing (MBT). We take a recent approach using decision tree learning to create a model of a black-box system and discuss the usage of such a decision tree model for test generation. In this scope, we define a test coverage metric for decision tree models. Furthermore, we identify different modes of testing and explain that a decision tree model especially facilitates model-based testing for black-box systems with limited controllability of inputs and the inability to reset the system to a specific state. A case study on a discrete system illustrates our MBT approach.