稀疏水下通信信道的估计与均衡

Fahad Khalil Paracha, Sheeraz Ahmed, N. Saleem, Nisar Ahmed Qureshi, M. S. Sana, Z. Khan
{"title":"稀疏水下通信信道的估计与均衡","authors":"Fahad Khalil Paracha, Sheeraz Ahmed, N. Saleem, Nisar Ahmed Qureshi, M. S. Sana, Z. Khan","doi":"10.1109/ISWSN.2017.8250017","DOIUrl":null,"url":null,"abstract":"Multipath channels with sparse impulse response arise in various communication scenarios. Multipath channel impulse response is depicted by a very few significant nonzero taps that are widely separated in time. In this paper, different estimation and equalization techniques are discussed which exploit sparse nature of radio communication channels. Various channel estimation techniques are implemented and a comprehensive comparative analysis is presented for sparse multipath channels. The implemented estimation algorithm/techniques include, Least Square (LS), Least Mean Square (LMS), Normalized Least Mean Square (NLMS), Variable Step Size Least Mean Square (VSSLMS), and Matching Pursuit (MP).","PeriodicalId":390044,"journal":{"name":"2017 International Symposium on Wireless Systems and Networks (ISWSN)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation and equalization of sparse underwater communication channels\",\"authors\":\"Fahad Khalil Paracha, Sheeraz Ahmed, N. Saleem, Nisar Ahmed Qureshi, M. S. Sana, Z. Khan\",\"doi\":\"10.1109/ISWSN.2017.8250017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multipath channels with sparse impulse response arise in various communication scenarios. Multipath channel impulse response is depicted by a very few significant nonzero taps that are widely separated in time. In this paper, different estimation and equalization techniques are discussed which exploit sparse nature of radio communication channels. Various channel estimation techniques are implemented and a comprehensive comparative analysis is presented for sparse multipath channels. The implemented estimation algorithm/techniques include, Least Square (LS), Least Mean Square (LMS), Normalized Least Mean Square (NLMS), Variable Step Size Least Mean Square (VSSLMS), and Matching Pursuit (MP).\",\"PeriodicalId\":390044,\"journal\":{\"name\":\"2017 International Symposium on Wireless Systems and Networks (ISWSN)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Wireless Systems and Networks (ISWSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWSN.2017.8250017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Wireless Systems and Networks (ISWSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWSN.2017.8250017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

具有稀疏脉冲响应的多径信道出现在各种通信场景中。多径通道脉冲响应是由在时间上广泛分离的极少数重要的非零抽头来描述的。本文讨论了利用无线电通信信道稀疏特性的各种估计和均衡技术。实现了各种信道估计技术,并对稀疏多径信道进行了全面的比较分析。实现的估计算法/技术包括最小二乘法(LS)、最小均二乘法(LMS)、归一化最小均二乘法(NLMS)、变步长最小均二乘法(VSSLMS)和匹配追踪(MP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation and equalization of sparse underwater communication channels
Multipath channels with sparse impulse response arise in various communication scenarios. Multipath channel impulse response is depicted by a very few significant nonzero taps that are widely separated in time. In this paper, different estimation and equalization techniques are discussed which exploit sparse nature of radio communication channels. Various channel estimation techniques are implemented and a comprehensive comparative analysis is presented for sparse multipath channels. The implemented estimation algorithm/techniques include, Least Square (LS), Least Mean Square (LMS), Normalized Least Mean Square (NLMS), Variable Step Size Least Mean Square (VSSLMS), and Matching Pursuit (MP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信