使用有限存储容量的无监督学习问题

R. Spooner, D. Jaarsma
{"title":"使用有限存储容量的无监督学习问题","authors":"R. Spooner, D. Jaarsma","doi":"10.1109/TSSC.1970.300291","DOIUrl":null,"url":null,"abstract":"In unsupervised learning pattern recognition problems, the need arises for updating conditional density functions of uncertain parameters using probability density function mixtures. In general, the form of the density mixtures is not reproducing, invoking the need for unlimited system storage requirements. One suboptimal method for achieving limited storage is to restrict the uncertain parameters in question to come from finite sets of values. An alternate method is proposed for a class of problems and its performance is shown to converge to that of the optimum unlimited storage system. A generalization of the procedure is also discussed.","PeriodicalId":120916,"journal":{"name":"IEEE Trans. Syst. Sci. Cybern.","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1970-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Unsupervised Learning Problem Using Limited Storage Capacity\",\"authors\":\"R. Spooner, D. Jaarsma\",\"doi\":\"10.1109/TSSC.1970.300291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In unsupervised learning pattern recognition problems, the need arises for updating conditional density functions of uncertain parameters using probability density function mixtures. In general, the form of the density mixtures is not reproducing, invoking the need for unlimited system storage requirements. One suboptimal method for achieving limited storage is to restrict the uncertain parameters in question to come from finite sets of values. An alternate method is proposed for a class of problems and its performance is shown to converge to that of the optimum unlimited storage system. A generalization of the procedure is also discussed.\",\"PeriodicalId\":120916,\"journal\":{\"name\":\"IEEE Trans. Syst. Sci. Cybern.\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Syst. Sci. Cybern.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSSC.1970.300291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Syst. Sci. Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSC.1970.300291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在无监督学习模式识别问题中,需要使用概率密度函数混合来更新不确定参数的条件密度函数。一般来说,密度混合物的形式不能再现,这就需要无限的系统存储需求。实现有限存储的一种次优方法是将所讨论的不确定参数限制为来自有限值集。针对一类问题提出了一种替代方法,其性能收敛于最优无限存储系统的性能。本文还讨论了该方法的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Unsupervised Learning Problem Using Limited Storage Capacity
In unsupervised learning pattern recognition problems, the need arises for updating conditional density functions of uncertain parameters using probability density function mixtures. In general, the form of the density mixtures is not reproducing, invoking the need for unlimited system storage requirements. One suboptimal method for achieving limited storage is to restrict the uncertain parameters in question to come from finite sets of values. An alternate method is proposed for a class of problems and its performance is shown to converge to that of the optimum unlimited storage system. A generalization of the procedure is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信