基于v -系统和密集卷积网络的雾霾车辆识别

Tianshu Chen
{"title":"基于v -系统和密集卷积网络的雾霾车辆识别","authors":"Tianshu Chen","doi":"10.1109/ECICE50847.2020.9301962","DOIUrl":null,"url":null,"abstract":"Haze increases the possibility of accidents. Therefore, it is important to improve the accuracy of the vehicle identification system in such a situation. This research proposes an image pre-processing algorithm for the system. Firstly, the accuracy is enhanced by the Single Scale Retinex algorithm. Secondly, the pictures are processed by V-system processing. Finally, the pre-processed pictures are identified by dense convolution network. The results show that the algorithm’s accuracy is 0.93% higher than the traditional method.","PeriodicalId":130143,"journal":{"name":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle Identification in Haze Based on V-System and Dense Convolution Network\",\"authors\":\"Tianshu Chen\",\"doi\":\"10.1109/ECICE50847.2020.9301962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Haze increases the possibility of accidents. Therefore, it is important to improve the accuracy of the vehicle identification system in such a situation. This research proposes an image pre-processing algorithm for the system. Firstly, the accuracy is enhanced by the Single Scale Retinex algorithm. Secondly, the pictures are processed by V-system processing. Finally, the pre-processed pictures are identified by dense convolution network. The results show that the algorithm’s accuracy is 0.93% higher than the traditional method.\",\"PeriodicalId\":130143,\"journal\":{\"name\":\"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECICE50847.2020.9301962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE50847.2020.9301962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

雾霾增加了发生事故的可能性。因此,在这种情况下,提高车辆识别系统的准确性就显得尤为重要。本研究针对该系统提出了一种图像预处理算法。首先,采用单尺度Retinex算法提高精度;其次,对图像进行v系统处理。最后,利用密集卷积网络对预处理后的图像进行识别。结果表明,该算法的准确率比传统方法提高了0.93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Identification in Haze Based on V-System and Dense Convolution Network
Haze increases the possibility of accidents. Therefore, it is important to improve the accuracy of the vehicle identification system in such a situation. This research proposes an image pre-processing algorithm for the system. Firstly, the accuracy is enhanced by the Single Scale Retinex algorithm. Secondly, the pictures are processed by V-system processing. Finally, the pre-processed pictures are identified by dense convolution network. The results show that the algorithm’s accuracy is 0.93% higher than the traditional method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信