{"title":"作为单片鳍线的热电偶功率传感器设计研究","authors":"Mark H. Jones, Jonathan B. Scott","doi":"10.1109/ARFTG77.2011.6034554","DOIUrl":null,"url":null,"abstract":"Making traceable power measurements above 110 GHz using current measurement technologies is challenging. We investigate a design of power sensor consisting of a thermocouple-based integrated circuit (IC) mounted as a finline component in WR-6 waveguide. The design is original in that it contains an antenna, terminating resistor and thermocouples on-chip. We detail the design and report results from simulations and measurements made on a two-port 16:1 scale model. Our design of scale model provides both insertion and reflection loss measurements. Electromagnetic simulation and easily-calibrated model measurements confirm that the short antenna fins feasible on a monolithic microwave integrated circuit (MMIC) can achieve acceptable specifications. The design proves to be relatively insensitive to the value of the terminating resistance or the size of the antenna fins.","PeriodicalId":257372,"journal":{"name":"77th ARFTG Microwave Measurement Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design study of a thermocouple power sensor as a monolithic fin-line\",\"authors\":\"Mark H. Jones, Jonathan B. Scott\",\"doi\":\"10.1109/ARFTG77.2011.6034554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Making traceable power measurements above 110 GHz using current measurement technologies is challenging. We investigate a design of power sensor consisting of a thermocouple-based integrated circuit (IC) mounted as a finline component in WR-6 waveguide. The design is original in that it contains an antenna, terminating resistor and thermocouples on-chip. We detail the design and report results from simulations and measurements made on a two-port 16:1 scale model. Our design of scale model provides both insertion and reflection loss measurements. Electromagnetic simulation and easily-calibrated model measurements confirm that the short antenna fins feasible on a monolithic microwave integrated circuit (MMIC) can achieve acceptable specifications. The design proves to be relatively insensitive to the value of the terminating resistance or the size of the antenna fins.\",\"PeriodicalId\":257372,\"journal\":{\"name\":\"77th ARFTG Microwave Measurement Conference\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"77th ARFTG Microwave Measurement Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARFTG77.2011.6034554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"77th ARFTG Microwave Measurement Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARFTG77.2011.6034554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design study of a thermocouple power sensor as a monolithic fin-line
Making traceable power measurements above 110 GHz using current measurement technologies is challenging. We investigate a design of power sensor consisting of a thermocouple-based integrated circuit (IC) mounted as a finline component in WR-6 waveguide. The design is original in that it contains an antenna, terminating resistor and thermocouples on-chip. We detail the design and report results from simulations and measurements made on a two-port 16:1 scale model. Our design of scale model provides both insertion and reflection loss measurements. Electromagnetic simulation and easily-calibrated model measurements confirm that the short antenna fins feasible on a monolithic microwave integrated circuit (MMIC) can achieve acceptable specifications. The design proves to be relatively insensitive to the value of the terminating resistance or the size of the antenna fins.