Khawar Shahzad, A. Khalid, Z. Rákossy, G. Paul, A. Chattopadhyay
{"title":"CoARX:基于arx的加密算法的协处理器","authors":"Khawar Shahzad, A. Khalid, Z. Rákossy, G. Paul, A. Chattopadhyay","doi":"10.1145/2463209.2488898","DOIUrl":null,"url":null,"abstract":"Cryptographic coprocessors are inherent part of modern Systemon-Chips. It serves dual purpose-efficient execution of cryptographic kernels and supporting protocols for preventing IP-piracy. Flexibility in such coprocessors is required to provide protection against emerging cryptanalytic schemes and to support different cryptographic functions like encryption and authentication. In this context, a novel crypto-coprocessor, named CoARX, supporting multiple cryptographic algorithms based on Addition (A), Rotation (R) and eXclusive-or (X) operations is proposed. CoARX supports diverse ARX-based cryptographic primitives. We show that compared to dedicated hardware implementations and general-purpose microprocessors, it offers excellent performance-flexibility trade-off including adaptability to resist generic cryptanalysis.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"CoARX: A coprocessor for ARX-based cryptographic algorithms\",\"authors\":\"Khawar Shahzad, A. Khalid, Z. Rákossy, G. Paul, A. Chattopadhyay\",\"doi\":\"10.1145/2463209.2488898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cryptographic coprocessors are inherent part of modern Systemon-Chips. It serves dual purpose-efficient execution of cryptographic kernels and supporting protocols for preventing IP-piracy. Flexibility in such coprocessors is required to provide protection against emerging cryptanalytic schemes and to support different cryptographic functions like encryption and authentication. In this context, a novel crypto-coprocessor, named CoARX, supporting multiple cryptographic algorithms based on Addition (A), Rotation (R) and eXclusive-or (X) operations is proposed. CoARX supports diverse ARX-based cryptographic primitives. We show that compared to dedicated hardware implementations and general-purpose microprocessors, it offers excellent performance-flexibility trade-off including adaptability to resist generic cryptanalysis.\",\"PeriodicalId\":320207,\"journal\":{\"name\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463209.2488898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CoARX: A coprocessor for ARX-based cryptographic algorithms
Cryptographic coprocessors are inherent part of modern Systemon-Chips. It serves dual purpose-efficient execution of cryptographic kernels and supporting protocols for preventing IP-piracy. Flexibility in such coprocessors is required to provide protection against emerging cryptanalytic schemes and to support different cryptographic functions like encryption and authentication. In this context, a novel crypto-coprocessor, named CoARX, supporting multiple cryptographic algorithms based on Addition (A), Rotation (R) and eXclusive-or (X) operations is proposed. CoARX supports diverse ARX-based cryptographic primitives. We show that compared to dedicated hardware implementations and general-purpose microprocessors, it offers excellent performance-flexibility trade-off including adaptability to resist generic cryptanalysis.