固定磁盘半球形滑块碰撞运动、接触力和粘附力的实验研究

K. Ono, K. Nakagawa
{"title":"固定磁盘半球形滑块碰撞运动、接触力和粘附力的实验研究","authors":"K. Ono, K. Nakagawa","doi":"10.1299/JSMEC.49.1159","DOIUrl":null,"url":null,"abstract":"In this paper, an experimental study of measuring the dynamic meniscus force and the contact force when hemispherical glass sliders bounce on stationary magnetic disks is presented. We prepared hemispherical glass sliders with radii of 1.0 and 2.0mm supported by slender cantilever beams and magnetic disks with 0-, 1-, 2-, and 3-nm-thick lubricant layers with and without ultraviolet (UV) irradiation. In the case of a 1-mm-radius slider with a surface roughness of 1.7nm in Ra, we found that an adhesion force can be clearly observed at the instant of separation under any lubricant condition except the one case of 1-nm-thick lubricant with UV. Typical data of displacement, velocity and acceleration of bouncing motion prove that the adhesion force originates from meniscus force rather than from van der Waals force. We also found that the maximum dynamic adhesion force is close to the static meniscus force. However, in the case of 3-nm-thick lubricant without UV, the dynamic adhesion force increases significantly, probably because of the effect of a squeeze film acting as a viscous fluid. In contrast, the smooth 2-mm-radius slider does not show a clear adhesion force at an impact velocity higher larger than 1.5mm/s. We also found that the maximum contact force versus penetration depth can be estimated well using the Hertz contact theory for the contact between a smooth sphere and a flat.","PeriodicalId":151961,"journal":{"name":"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Experimental Study of Collision Motion, Contact Force and Adhesion Force of Hemispherical Sliders with Stationary Magnetic Disks\",\"authors\":\"K. Ono, K. Nakagawa\",\"doi\":\"10.1299/JSMEC.49.1159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an experimental study of measuring the dynamic meniscus force and the contact force when hemispherical glass sliders bounce on stationary magnetic disks is presented. We prepared hemispherical glass sliders with radii of 1.0 and 2.0mm supported by slender cantilever beams and magnetic disks with 0-, 1-, 2-, and 3-nm-thick lubricant layers with and without ultraviolet (UV) irradiation. In the case of a 1-mm-radius slider with a surface roughness of 1.7nm in Ra, we found that an adhesion force can be clearly observed at the instant of separation under any lubricant condition except the one case of 1-nm-thick lubricant with UV. Typical data of displacement, velocity and acceleration of bouncing motion prove that the adhesion force originates from meniscus force rather than from van der Waals force. We also found that the maximum dynamic adhesion force is close to the static meniscus force. However, in the case of 3-nm-thick lubricant without UV, the dynamic adhesion force increases significantly, probably because of the effect of a squeeze film acting as a viscous fluid. In contrast, the smooth 2-mm-radius slider does not show a clear adhesion force at an impact velocity higher larger than 1.5mm/s. We also found that the maximum contact force versus penetration depth can be estimated well using the Hertz contact theory for the contact between a smooth sphere and a flat.\",\"PeriodicalId\":151961,\"journal\":{\"name\":\"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEC.49.1159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEC.49.1159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文介绍了测量半球形玻璃滑块在静止磁盘上弹跳时的动态半月板力和接触力的实验研究。我们制备了半径为1.0和2.0mm的半球形玻璃滑块,由细长的悬臂梁和带有0、1、2和3纳米厚润滑剂层的磁盘支撑,并在紫外线照射和不照射下进行了实验。对于半径为1 mm,表面粗糙度为1.7nm的Ra滑块,我们发现除了1 nm厚的UV润滑剂外,在任何润滑剂条件下,在分离的瞬间都可以清楚地观察到附着力。典型的弹跳运动位移、速度和加速度数据证明,黏附力来源于半月板力而不是范德华力。我们还发现,最大动态粘附力接近静态半月板力。然而,在没有UV的3纳米厚润滑剂的情况下,动态附着力显着增加,可能是因为挤压膜充当粘性流体的作用。而光滑半径为2mm的滑块在冲击速度大于1.5mm/s时,黏附力不明显。我们还发现,对于光滑球体与平面之间的接触,使用赫兹接触理论可以很好地估计出最大接触力与穿透深度的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Study of Collision Motion, Contact Force and Adhesion Force of Hemispherical Sliders with Stationary Magnetic Disks
In this paper, an experimental study of measuring the dynamic meniscus force and the contact force when hemispherical glass sliders bounce on stationary magnetic disks is presented. We prepared hemispherical glass sliders with radii of 1.0 and 2.0mm supported by slender cantilever beams and magnetic disks with 0-, 1-, 2-, and 3-nm-thick lubricant layers with and without ultraviolet (UV) irradiation. In the case of a 1-mm-radius slider with a surface roughness of 1.7nm in Ra, we found that an adhesion force can be clearly observed at the instant of separation under any lubricant condition except the one case of 1-nm-thick lubricant with UV. Typical data of displacement, velocity and acceleration of bouncing motion prove that the adhesion force originates from meniscus force rather than from van der Waals force. We also found that the maximum dynamic adhesion force is close to the static meniscus force. However, in the case of 3-nm-thick lubricant without UV, the dynamic adhesion force increases significantly, probably because of the effect of a squeeze film acting as a viscous fluid. In contrast, the smooth 2-mm-radius slider does not show a clear adhesion force at an impact velocity higher larger than 1.5mm/s. We also found that the maximum contact force versus penetration depth can be estimated well using the Hertz contact theory for the contact between a smooth sphere and a flat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信