{"title":"复积分的一些Chebyshev型不等式","authors":"S. Dragomir","doi":"10.18273/revint.v37n2-2019006","DOIUrl":null,"url":null,"abstract":"Assume thatfandgare continuous onγ,γ⊂Cis a piecewisesmooth path parametrized byz(t), t∈[a, b]fromz(a) =utoz(b) =wwithw6=u, and thecomplex Chebyshev functionalis defined byDγ(f, g) :=1w−u∫γf(z)g(z)dz−1w−u∫γf(z)dz1w−u∫γg(z)dz.In this paper we establish some bounds for the magnitude of the functionalDγ(f, g)under Lipschitzian assumptions for the functionsfandg,and pro-vide a complex version for the well known Chebyshev inequality.","PeriodicalId":402331,"journal":{"name":"Revista Integración","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some Chebyshev type inequalities for thecomplex integral\",\"authors\":\"S. Dragomir\",\"doi\":\"10.18273/revint.v37n2-2019006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assume thatfandgare continuous onγ,γ⊂Cis a piecewisesmooth path parametrized byz(t), t∈[a, b]fromz(a) =utoz(b) =wwithw6=u, and thecomplex Chebyshev functionalis defined byDγ(f, g) :=1w−u∫γf(z)g(z)dz−1w−u∫γf(z)dz1w−u∫γg(z)dz.In this paper we establish some bounds for the magnitude of the functionalDγ(f, g)under Lipschitzian assumptions for the functionsfandg,and pro-vide a complex version for the well known Chebyshev inequality.\",\"PeriodicalId\":402331,\"journal\":{\"name\":\"Revista Integración\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Integración\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revint.v37n2-2019006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Integración","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revint.v37n2-2019006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On some Chebyshev type inequalities for thecomplex integral
Assume thatfandgare continuous onγ,γ⊂Cis a piecewisesmooth path parametrized byz(t), t∈[a, b]fromz(a) =utoz(b) =wwithw6=u, and thecomplex Chebyshev functionalis defined byDγ(f, g) :=1w−u∫γf(z)g(z)dz−1w−u∫γf(z)dz1w−u∫γg(z)dz.In this paper we establish some bounds for the magnitude of the functionalDγ(f, g)under Lipschitzian assumptions for the functionsfandg,and pro-vide a complex version for the well known Chebyshev inequality.