用于人工智能研究的可定制模拟器以调度半导体晶圆厂

Benjamin Kovács, Pierre Tassel, Ramsha Ali, Mohammed M. S. El-Kholany, M. Gebser, Georg Seidel
{"title":"用于人工智能研究的可定制模拟器以调度半导体晶圆厂","authors":"Benjamin Kovács, Pierre Tassel, Ramsha Ali, Mohammed M. S. El-Kholany, M. Gebser, Georg Seidel","doi":"10.1109/asmc54647.2022.9792520","DOIUrl":null,"url":null,"abstract":"Optimal scheduling of semiconductor fabs is a huge challenge due to the problem scale and complexity. New dispatching strategies are usually developed and tested using simulators of different fidelity levels. This work presents a scalable, open-source tool for simulating factories up to real-world size, aiming to support the research into new scheduling algorithms from prototyping to large-scale experiments. The simulator comes with a declarative environment definition framework and is out of the box usable with existing reinforcement learning methods, priority-based rules, or evolutionary algorithms. We verify our tool on large-scale public instances and provide proof-of-concept demonstrations of the reinforcement learning interface’s usage.","PeriodicalId":436890,"journal":{"name":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Customizable Simulator for Artificial Intelligence Research to Schedule Semiconductor Fabs\",\"authors\":\"Benjamin Kovács, Pierre Tassel, Ramsha Ali, Mohammed M. S. El-Kholany, M. Gebser, Georg Seidel\",\"doi\":\"10.1109/asmc54647.2022.9792520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal scheduling of semiconductor fabs is a huge challenge due to the problem scale and complexity. New dispatching strategies are usually developed and tested using simulators of different fidelity levels. This work presents a scalable, open-source tool for simulating factories up to real-world size, aiming to support the research into new scheduling algorithms from prototyping to large-scale experiments. The simulator comes with a declarative environment definition framework and is out of the box usable with existing reinforcement learning methods, priority-based rules, or evolutionary algorithms. We verify our tool on large-scale public instances and provide proof-of-concept demonstrations of the reinforcement learning interface’s usage.\",\"PeriodicalId\":436890,\"journal\":{\"name\":\"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/asmc54647.2022.9792520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asmc54647.2022.9792520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于问题的规模和复杂性,半导体晶圆厂的优化调度是一个巨大的挑战。新的调度策略通常使用不同保真度的模拟器进行开发和测试。这项工作提出了一个可扩展的开源工具,用于模拟工厂达到现实世界的规模,旨在支持从原型设计到大规模实验的新调度算法的研究。该模拟器带有声明性环境定义框架,可以与现有的强化学习方法、基于优先级的规则或进化算法一起使用。我们在大规模的公共实例上验证了我们的工具,并提供了强化学习接口使用的概念验证演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Customizable Simulator for Artificial Intelligence Research to Schedule Semiconductor Fabs
Optimal scheduling of semiconductor fabs is a huge challenge due to the problem scale and complexity. New dispatching strategies are usually developed and tested using simulators of different fidelity levels. This work presents a scalable, open-source tool for simulating factories up to real-world size, aiming to support the research into new scheduling algorithms from prototyping to large-scale experiments. The simulator comes with a declarative environment definition framework and is out of the box usable with existing reinforcement learning methods, priority-based rules, or evolutionary algorithms. We verify our tool on large-scale public instances and provide proof-of-concept demonstrations of the reinforcement learning interface’s usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信