Benjamin Kovács, Pierre Tassel, Ramsha Ali, Mohammed M. S. El-Kholany, M. Gebser, Georg Seidel
{"title":"用于人工智能研究的可定制模拟器以调度半导体晶圆厂","authors":"Benjamin Kovács, Pierre Tassel, Ramsha Ali, Mohammed M. S. El-Kholany, M. Gebser, Georg Seidel","doi":"10.1109/asmc54647.2022.9792520","DOIUrl":null,"url":null,"abstract":"Optimal scheduling of semiconductor fabs is a huge challenge due to the problem scale and complexity. New dispatching strategies are usually developed and tested using simulators of different fidelity levels. This work presents a scalable, open-source tool for simulating factories up to real-world size, aiming to support the research into new scheduling algorithms from prototyping to large-scale experiments. The simulator comes with a declarative environment definition framework and is out of the box usable with existing reinforcement learning methods, priority-based rules, or evolutionary algorithms. We verify our tool on large-scale public instances and provide proof-of-concept demonstrations of the reinforcement learning interface’s usage.","PeriodicalId":436890,"journal":{"name":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Customizable Simulator for Artificial Intelligence Research to Schedule Semiconductor Fabs\",\"authors\":\"Benjamin Kovács, Pierre Tassel, Ramsha Ali, Mohammed M. S. El-Kholany, M. Gebser, Georg Seidel\",\"doi\":\"10.1109/asmc54647.2022.9792520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal scheduling of semiconductor fabs is a huge challenge due to the problem scale and complexity. New dispatching strategies are usually developed and tested using simulators of different fidelity levels. This work presents a scalable, open-source tool for simulating factories up to real-world size, aiming to support the research into new scheduling algorithms from prototyping to large-scale experiments. The simulator comes with a declarative environment definition framework and is out of the box usable with existing reinforcement learning methods, priority-based rules, or evolutionary algorithms. We verify our tool on large-scale public instances and provide proof-of-concept demonstrations of the reinforcement learning interface’s usage.\",\"PeriodicalId\":436890,\"journal\":{\"name\":\"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/asmc54647.2022.9792520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asmc54647.2022.9792520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Customizable Simulator for Artificial Intelligence Research to Schedule Semiconductor Fabs
Optimal scheduling of semiconductor fabs is a huge challenge due to the problem scale and complexity. New dispatching strategies are usually developed and tested using simulators of different fidelity levels. This work presents a scalable, open-source tool for simulating factories up to real-world size, aiming to support the research into new scheduling algorithms from prototyping to large-scale experiments. The simulator comes with a declarative environment definition framework and is out of the box usable with existing reinforcement learning methods, priority-based rules, or evolutionary algorithms. We verify our tool on large-scale public instances and provide proof-of-concept demonstrations of the reinforcement learning interface’s usage.