微通道技术对混合动力汽车热堆和热性能的影响

Nicholas R. Jankowski, L. Everhart, B. Morgan, B. Geil, P. McCluskey
{"title":"微通道技术对混合动力汽车热堆和热性能的影响","authors":"Nicholas R. Jankowski, L. Everhart, B. Morgan, B. Geil, P. McCluskey","doi":"10.1109/VPPC.2007.4544111","DOIUrl":null,"url":null,"abstract":"Hybrid electric vehicles for military applications require advanced cooling to ensure peak power electronics performance and reliability. Two methods of reducing overall thermal resistivity by integrating microchannel coolers into the power electronics thermal stack are explored. The first approach involves silicon manifold microchannel coolers with direct fluid impingement on the semiconductor die. The second involves fabricating standard, parallel microchannels into a standard aluminum nitride substrate. Both designs are evaluated for flow and thermal performance in cooling a 4 mm silicon carbide diode. Both designs are found to be of comparable performance, primarily due to non-optimum microchannel dimensions for operating pressures below 35 kPa. For both types of devices, typical flow rates ranged from 40-60 mL/min with thermal resistivities on the order of 0.13-0.19degC-m2/W. Potential for future improvement of each design is discussed.","PeriodicalId":345424,"journal":{"name":"2007 IEEE Vehicle Power and Propulsion Conference","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Comparing Microchannel Technologies to Minimize the Thermal Stack and Improve Thermal Performance in Hybrid Electric Vehicles\",\"authors\":\"Nicholas R. Jankowski, L. Everhart, B. Morgan, B. Geil, P. McCluskey\",\"doi\":\"10.1109/VPPC.2007.4544111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid electric vehicles for military applications require advanced cooling to ensure peak power electronics performance and reliability. Two methods of reducing overall thermal resistivity by integrating microchannel coolers into the power electronics thermal stack are explored. The first approach involves silicon manifold microchannel coolers with direct fluid impingement on the semiconductor die. The second involves fabricating standard, parallel microchannels into a standard aluminum nitride substrate. Both designs are evaluated for flow and thermal performance in cooling a 4 mm silicon carbide diode. Both designs are found to be of comparable performance, primarily due to non-optimum microchannel dimensions for operating pressures below 35 kPa. For both types of devices, typical flow rates ranged from 40-60 mL/min with thermal resistivities on the order of 0.13-0.19degC-m2/W. Potential for future improvement of each design is discussed.\",\"PeriodicalId\":345424,\"journal\":{\"name\":\"2007 IEEE Vehicle Power and Propulsion Conference\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Vehicle Power and Propulsion Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC.2007.4544111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Vehicle Power and Propulsion Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2007.4544111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

用于军事用途的混合动力电动汽车需要先进的冷却技术,以确保峰值电力电子性能和可靠性。探讨了两种通过将微通道冷却器集成到电力电子热堆中来降低整体热电阻率的方法。第一种方法涉及硅歧管微通道冷却器与半导体芯片上的直接流体冲击。第二种方法是在标准氮化铝衬底上制造标准的平行微通道。两种设计在冷却4毫米碳化硅二极管的流动和热性能进行了评估。这两种设计都具有相当的性能,主要是由于操作压力低于35kpa时的微通道尺寸不是最佳的。对于这两种类型的设备,典型的流量范围为40-60 mL/min,热电阻为0.13-0.19℃-m2/W。讨论了每种设计的未来改进潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Microchannel Technologies to Minimize the Thermal Stack and Improve Thermal Performance in Hybrid Electric Vehicles
Hybrid electric vehicles for military applications require advanced cooling to ensure peak power electronics performance and reliability. Two methods of reducing overall thermal resistivity by integrating microchannel coolers into the power electronics thermal stack are explored. The first approach involves silicon manifold microchannel coolers with direct fluid impingement on the semiconductor die. The second involves fabricating standard, parallel microchannels into a standard aluminum nitride substrate. Both designs are evaluated for flow and thermal performance in cooling a 4 mm silicon carbide diode. Both designs are found to be of comparable performance, primarily due to non-optimum microchannel dimensions for operating pressures below 35 kPa. For both types of devices, typical flow rates ranged from 40-60 mL/min with thermal resistivities on the order of 0.13-0.19degC-m2/W. Potential for future improvement of each design is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信