用于预测建模的增强集成模型:一个概念框架

Janson Luke Ong Wai Kit, V. Asirvadam, M. Hassan
{"title":"用于预测建模的增强集成模型:一个概念框架","authors":"Janson Luke Ong Wai Kit, V. Asirvadam, M. Hassan","doi":"10.1109/CSPA52141.2021.9377299","DOIUrl":null,"url":null,"abstract":"Ensemble Model learnings refers to a collection of techniques that combine multiple learning algorithms to improve overall prediction accuracy and persistency. This paper looks into the conceptual framework of how to enhance the ensemble model techniques and provide a comprehensive study on predictive model approach using an enhanced ensemble model. We explore the framework, performance evaluation and experimental approach.","PeriodicalId":194655,"journal":{"name":"2021 IEEE 17th International Colloquium on Signal Processing & Its Applications (CSPA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhanced Ensemble Models for Predictive Modeling: A Conceptual Framework\",\"authors\":\"Janson Luke Ong Wai Kit, V. Asirvadam, M. Hassan\",\"doi\":\"10.1109/CSPA52141.2021.9377299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensemble Model learnings refers to a collection of techniques that combine multiple learning algorithms to improve overall prediction accuracy and persistency. This paper looks into the conceptual framework of how to enhance the ensemble model techniques and provide a comprehensive study on predictive model approach using an enhanced ensemble model. We explore the framework, performance evaluation and experimental approach.\",\"PeriodicalId\":194655,\"journal\":{\"name\":\"2021 IEEE 17th International Colloquium on Signal Processing & Its Applications (CSPA)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Colloquium on Signal Processing & Its Applications (CSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPA52141.2021.9377299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Colloquium on Signal Processing & Its Applications (CSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA52141.2021.9377299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

集成模型学习是指结合多种学习算法来提高整体预测准确性和持久性的技术集合。本文探讨了如何增强集成模型技术的概念框架,并对使用增强集成模型的预测模型方法进行了全面研究。我们探讨了框架、性能评估和实验方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Ensemble Models for Predictive Modeling: A Conceptual Framework
Ensemble Model learnings refers to a collection of techniques that combine multiple learning algorithms to improve overall prediction accuracy and persistency. This paper looks into the conceptual framework of how to enhance the ensemble model techniques and provide a comprehensive study on predictive model approach using an enhanced ensemble model. We explore the framework, performance evaluation and experimental approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信