一劳永逸的跳过:高效自适应深度神经网络

Yu Yang, Di Liu, Hui Fang, Yi-Xiong Huang, Ying Sun, Zhi-Yuan Zhang
{"title":"一劳永逸的跳过:高效自适应深度神经网络","authors":"Yu Yang, Di Liu, Hui Fang, Yi-Xiong Huang, Ying Sun, Zhi-Yuan Zhang","doi":"10.23919/DATE54114.2022.9774567","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new module, namely once for all skip (OFAS), for adaptive deep neural networks to efficiently control the block skip within a DNN model. The novelty of OFAS is that it only needs to compute once for all skippable blocks to determine their execution states. Moreover, since adaptive DNN models with OFAS cannot achieve the best accuracy and efficiency in end-to-end training, we propose a reinforcement learning-based training method to enhance the training procedure. The experimental results with different models and datasets demonstrate the effectiveness and efficiency in comparison to the state of the arts. The code is available at https://github.com/ieslab-ynu/OFAS.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Once For All Skip: Efficient Adaptive Deep Neural Networks\",\"authors\":\"Yu Yang, Di Liu, Hui Fang, Yi-Xiong Huang, Ying Sun, Zhi-Yuan Zhang\",\"doi\":\"10.23919/DATE54114.2022.9774567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new module, namely once for all skip (OFAS), for adaptive deep neural networks to efficiently control the block skip within a DNN model. The novelty of OFAS is that it only needs to compute once for all skippable blocks to determine their execution states. Moreover, since adaptive DNN models with OFAS cannot achieve the best accuracy and efficiency in end-to-end training, we propose a reinforcement learning-based training method to enhance the training procedure. The experimental results with different models and datasets demonstrate the effectiveness and efficiency in comparison to the state of the arts. The code is available at https://github.com/ieslab-ynu/OFAS.\",\"PeriodicalId\":232583,\"journal\":{\"name\":\"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DATE54114.2022.9774567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE54114.2022.9774567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的自适应深度神经网络模块,即一次性跳过(OFAS),以有效地控制深度神经网络模型中的块跳过。OFAS的新颖之处在于,它只需要为所有可跳过的块计算一次,就可以确定它们的执行状态。此外,由于带有OFAS的自适应DNN模型在端到端训练中无法达到最佳的准确性和效率,我们提出了一种基于强化学习的训练方法来增强训练过程。不同模型和数据集的实验结果表明,与目前的技术相比,该方法是有效和高效的。代码可在https://github.com/ieslab-ynu/OFAS上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Once For All Skip: Efficient Adaptive Deep Neural Networks
In this paper, we propose a new module, namely once for all skip (OFAS), for adaptive deep neural networks to efficiently control the block skip within a DNN model. The novelty of OFAS is that it only needs to compute once for all skippable blocks to determine their execution states. Moreover, since adaptive DNN models with OFAS cannot achieve the best accuracy and efficiency in end-to-end training, we propose a reinforcement learning-based training method to enhance the training procedure. The experimental results with different models and datasets demonstrate the effectiveness and efficiency in comparison to the state of the arts. The code is available at https://github.com/ieslab-ynu/OFAS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信