Chao Huang, Quan Ding, Guoming Qian, Xuefeng Chen, Xiaoyu Chen
{"title":"考虑多重能量不确定性的综合能源系统鲁棒规划方法","authors":"Chao Huang, Quan Ding, Guoming Qian, Xuefeng Chen, Xiaoyu Chen","doi":"10.1109/iSPEC50848.2020.9351071","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust planning method for regional integrated energy systems(IES) considering the uncertainty of cold, hot and electric multi-energy loads. Based on the improved energy hub (EH) model, we established a regional integrated energy system model, which includes CHP, electric boilers, gas boilers, electric chiller, absorption chiller, battery, thermal storage and cold storage. In addition, 0–1 variable of equipment selection is introduced to select and optimize the capacity of each equipment. The polyhedron set is used to describe the uncertainty of multi-energy load, and a robust planning model is formed and equivalent transformed. Finally, the capacity planning model is realized by programming in MATLAB, and the optimal configuration is solved by CPLEX. The result shows that the conservatism of system planning can be controlled by robust measure, and the optimal plan can guarantee reliability and economy of the system at the same time. It also reflects the multi energy complementary integration optimization benefits of IES.","PeriodicalId":403879,"journal":{"name":"2020 IEEE Sustainable Power and Energy Conference (iSPEC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Planning Method for Integrated Energy Systems with the Consideration of multiple energy uncertainties\",\"authors\":\"Chao Huang, Quan Ding, Guoming Qian, Xuefeng Chen, Xiaoyu Chen\",\"doi\":\"10.1109/iSPEC50848.2020.9351071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a robust planning method for regional integrated energy systems(IES) considering the uncertainty of cold, hot and electric multi-energy loads. Based on the improved energy hub (EH) model, we established a regional integrated energy system model, which includes CHP, electric boilers, gas boilers, electric chiller, absorption chiller, battery, thermal storage and cold storage. In addition, 0–1 variable of equipment selection is introduced to select and optimize the capacity of each equipment. The polyhedron set is used to describe the uncertainty of multi-energy load, and a robust planning model is formed and equivalent transformed. Finally, the capacity planning model is realized by programming in MATLAB, and the optimal configuration is solved by CPLEX. The result shows that the conservatism of system planning can be controlled by robust measure, and the optimal plan can guarantee reliability and economy of the system at the same time. It also reflects the multi energy complementary integration optimization benefits of IES.\",\"PeriodicalId\":403879,\"journal\":{\"name\":\"2020 IEEE Sustainable Power and Energy Conference (iSPEC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Sustainable Power and Energy Conference (iSPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSPEC50848.2020.9351071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sustainable Power and Energy Conference (iSPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSPEC50848.2020.9351071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Planning Method for Integrated Energy Systems with the Consideration of multiple energy uncertainties
In this paper, we propose a robust planning method for regional integrated energy systems(IES) considering the uncertainty of cold, hot and electric multi-energy loads. Based on the improved energy hub (EH) model, we established a regional integrated energy system model, which includes CHP, electric boilers, gas boilers, electric chiller, absorption chiller, battery, thermal storage and cold storage. In addition, 0–1 variable of equipment selection is introduced to select and optimize the capacity of each equipment. The polyhedron set is used to describe the uncertainty of multi-energy load, and a robust planning model is formed and equivalent transformed. Finally, the capacity planning model is realized by programming in MATLAB, and the optimal configuration is solved by CPLEX. The result shows that the conservatism of system planning can be controlled by robust measure, and the optimal plan can guarantee reliability and economy of the system at the same time. It also reflects the multi energy complementary integration optimization benefits of IES.