考虑多重能量不确定性的综合能源系统鲁棒规划方法

Chao Huang, Quan Ding, Guoming Qian, Xuefeng Chen, Xiaoyu Chen
{"title":"考虑多重能量不确定性的综合能源系统鲁棒规划方法","authors":"Chao Huang, Quan Ding, Guoming Qian, Xuefeng Chen, Xiaoyu Chen","doi":"10.1109/iSPEC50848.2020.9351071","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust planning method for regional integrated energy systems(IES) considering the uncertainty of cold, hot and electric multi-energy loads. Based on the improved energy hub (EH) model, we established a regional integrated energy system model, which includes CHP, electric boilers, gas boilers, electric chiller, absorption chiller, battery, thermal storage and cold storage. In addition, 0–1 variable of equipment selection is introduced to select and optimize the capacity of each equipment. The polyhedron set is used to describe the uncertainty of multi-energy load, and a robust planning model is formed and equivalent transformed. Finally, the capacity planning model is realized by programming in MATLAB, and the optimal configuration is solved by CPLEX. The result shows that the conservatism of system planning can be controlled by robust measure, and the optimal plan can guarantee reliability and economy of the system at the same time. It also reflects the multi energy complementary integration optimization benefits of IES.","PeriodicalId":403879,"journal":{"name":"2020 IEEE Sustainable Power and Energy Conference (iSPEC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Planning Method for Integrated Energy Systems with the Consideration of multiple energy uncertainties\",\"authors\":\"Chao Huang, Quan Ding, Guoming Qian, Xuefeng Chen, Xiaoyu Chen\",\"doi\":\"10.1109/iSPEC50848.2020.9351071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a robust planning method for regional integrated energy systems(IES) considering the uncertainty of cold, hot and electric multi-energy loads. Based on the improved energy hub (EH) model, we established a regional integrated energy system model, which includes CHP, electric boilers, gas boilers, electric chiller, absorption chiller, battery, thermal storage and cold storage. In addition, 0–1 variable of equipment selection is introduced to select and optimize the capacity of each equipment. The polyhedron set is used to describe the uncertainty of multi-energy load, and a robust planning model is formed and equivalent transformed. Finally, the capacity planning model is realized by programming in MATLAB, and the optimal configuration is solved by CPLEX. The result shows that the conservatism of system planning can be controlled by robust measure, and the optimal plan can guarantee reliability and economy of the system at the same time. It also reflects the multi energy complementary integration optimization benefits of IES.\",\"PeriodicalId\":403879,\"journal\":{\"name\":\"2020 IEEE Sustainable Power and Energy Conference (iSPEC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Sustainable Power and Energy Conference (iSPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSPEC50848.2020.9351071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sustainable Power and Energy Conference (iSPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSPEC50848.2020.9351071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种考虑冷、热、电多能负荷不确定性的区域综合能源系统鲁棒规划方法。基于改进的能源枢纽(EH)模型,建立了包括热电联产、电锅炉、燃气锅炉、电冷水机组、吸收式冷水机组、蓄电池、蓄热、冷库在内的区域综合能源系统模型。另外,引入0-1设备选择变量,对各设备的容量进行选择和优化。采用多面体集描述多能负荷的不确定性,建立鲁棒规划模型并进行等效转换。最后,通过MATLAB编程实现了容量规划模型,并利用CPLEX求解最优配置。结果表明,系统规划的稳健性可以通过鲁棒性措施来控制,最优规划能够保证系统的可靠性和经济性。这也体现了IES的多能互补集成优化效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Planning Method for Integrated Energy Systems with the Consideration of multiple energy uncertainties
In this paper, we propose a robust planning method for regional integrated energy systems(IES) considering the uncertainty of cold, hot and electric multi-energy loads. Based on the improved energy hub (EH) model, we established a regional integrated energy system model, which includes CHP, electric boilers, gas boilers, electric chiller, absorption chiller, battery, thermal storage and cold storage. In addition, 0–1 variable of equipment selection is introduced to select and optimize the capacity of each equipment. The polyhedron set is used to describe the uncertainty of multi-energy load, and a robust planning model is formed and equivalent transformed. Finally, the capacity planning model is realized by programming in MATLAB, and the optimal configuration is solved by CPLEX. The result shows that the conservatism of system planning can be controlled by robust measure, and the optimal plan can guarantee reliability and economy of the system at the same time. It also reflects the multi energy complementary integration optimization benefits of IES.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信