具有视觉注意的神经形态智能图像传感器的像素并行结构

Md Jubaer Hossain Pantho, Pankaj Bhowmik, C. Bobda
{"title":"具有视觉注意的神经形态智能图像传感器的像素并行结构","authors":"Md Jubaer Hossain Pantho, Pankaj Bhowmik, C. Bobda","doi":"10.1109/ISVLSI.2018.00053","DOIUrl":null,"url":null,"abstract":"Power reduction and speedup of computer vision designs remain of high interest as image resolutions continue to increase. Neuromorphic-circuits, emulating the behavior of the nervous system, aspire to achieve this goal. In this paper, we present a pixel-parallel 3D-architecture of a neuromorphic image sensor that uses different sampling frequencies in different regions of an image. We design the model as a bottom-up 3D-architecture composing of several hierarchical computational planes where each plane performs different image processing algorithms in parallel. The on-chip attention module dynamically detects regions with relevant information and produces a feedback path to sample those regions with a higher clock frequency, whereas regions with low spatial and temporal information receive less attention. The results show that by sampling non-relevant regions with a lower frequency, the sensor can reduce redundancy and enable high-performance computing at low power.","PeriodicalId":114330,"journal":{"name":"2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Pixel-Parallel Architecture for Neuromorphic Smart Image Sensor with Visual Attention\",\"authors\":\"Md Jubaer Hossain Pantho, Pankaj Bhowmik, C. Bobda\",\"doi\":\"10.1109/ISVLSI.2018.00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power reduction and speedup of computer vision designs remain of high interest as image resolutions continue to increase. Neuromorphic-circuits, emulating the behavior of the nervous system, aspire to achieve this goal. In this paper, we present a pixel-parallel 3D-architecture of a neuromorphic image sensor that uses different sampling frequencies in different regions of an image. We design the model as a bottom-up 3D-architecture composing of several hierarchical computational planes where each plane performs different image processing algorithms in parallel. The on-chip attention module dynamically detects regions with relevant information and produces a feedback path to sample those regions with a higher clock frequency, whereas regions with low spatial and temporal information receive less attention. The results show that by sampling non-relevant regions with a lower frequency, the sensor can reduce redundancy and enable high-performance computing at low power.\",\"PeriodicalId\":114330,\"journal\":{\"name\":\"2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2018.00053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2018.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

随着图像分辨率的不断提高,计算机视觉设计的功耗降低和加速仍然是人们高度关注的问题。模拟神经系统行为的神经形态回路渴望实现这一目标。在本文中,我们提出了一种神经形态图像传感器的像素并行3d架构,该架构在图像的不同区域使用不同的采样频率。我们将模型设计为由多个分层计算平面组成的自下而上的3d架构,其中每个平面并行执行不同的图像处理算法。片上注意力模块动态检测具有相关信息的区域,并产生反馈路径对时钟频率较高的区域进行采样,而时空信息较低的区域受到的关注较少。结果表明,通过对非相关区域进行低频率采样,传感器可以减少冗余,实现低功耗下的高性能计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pixel-Parallel Architecture for Neuromorphic Smart Image Sensor with Visual Attention
Power reduction and speedup of computer vision designs remain of high interest as image resolutions continue to increase. Neuromorphic-circuits, emulating the behavior of the nervous system, aspire to achieve this goal. In this paper, we present a pixel-parallel 3D-architecture of a neuromorphic image sensor that uses different sampling frequencies in different regions of an image. We design the model as a bottom-up 3D-architecture composing of several hierarchical computational planes where each plane performs different image processing algorithms in parallel. The on-chip attention module dynamically detects regions with relevant information and produces a feedback path to sample those regions with a higher clock frequency, whereas regions with low spatial and temporal information receive less attention. The results show that by sampling non-relevant regions with a lower frequency, the sensor can reduce redundancy and enable high-performance computing at low power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信