一种自适应精英交叉的量子粒子群优化算法

Zhenlun Yang, Xue-meng Wei, Meiling Qiu, Kunquan Shi
{"title":"一种自适应精英交叉的量子粒子群优化算法","authors":"Zhenlun Yang, Xue-meng Wei, Meiling Qiu, Kunquan Shi","doi":"10.1109/IHMSC52134.2021.00048","DOIUrl":null,"url":null,"abstract":"A quantum-behaved particle swarm optimization with self-adaptive elitist crossover (EXQPSO) is proposed in this paper. In the proposed EXQPSO algorithm, the crossover operator is performed on the elitist individuals to improve the qualities of the search individuals. Moreover, a self-adaptive scheme is proposed to automatically tune the crossover probability according to the performance of the crossover operator. Experiments on the well-known benchmark test suite showed that the proposed EXQPSO is better than the original QPSO in terms of global search capability and computation efficiency.","PeriodicalId":380011,"journal":{"name":"2021 13th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A quantum-behaved particle swarm optimization algorithm with self-adaptive elitist crossover\",\"authors\":\"Zhenlun Yang, Xue-meng Wei, Meiling Qiu, Kunquan Shi\",\"doi\":\"10.1109/IHMSC52134.2021.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quantum-behaved particle swarm optimization with self-adaptive elitist crossover (EXQPSO) is proposed in this paper. In the proposed EXQPSO algorithm, the crossover operator is performed on the elitist individuals to improve the qualities of the search individuals. Moreover, a self-adaptive scheme is proposed to automatically tune the crossover probability according to the performance of the crossover operator. Experiments on the well-known benchmark test suite showed that the proposed EXQPSO is better than the original QPSO in terms of global search capability and computation efficiency.\",\"PeriodicalId\":380011,\"journal\":{\"name\":\"2021 13th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC52134.2021.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC52134.2021.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种具有自适应精英交叉的量子粒子群优化算法。提出的EXQPSO算法在最优个体上进行交叉算子,以提高搜索个体的质量。此外,根据交叉算子的性能,提出了一种自动调整交叉概率的自适应方案。在著名的基准测试套件上进行的实验表明,该算法在全局搜索能力和计算效率方面都优于原算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quantum-behaved particle swarm optimization algorithm with self-adaptive elitist crossover
A quantum-behaved particle swarm optimization with self-adaptive elitist crossover (EXQPSO) is proposed in this paper. In the proposed EXQPSO algorithm, the crossover operator is performed on the elitist individuals to improve the qualities of the search individuals. Moreover, a self-adaptive scheme is proposed to automatically tune the crossover probability according to the performance of the crossover operator. Experiments on the well-known benchmark test suite showed that the proposed EXQPSO is better than the original QPSO in terms of global search capability and computation efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信