音乐类型分类采用spatan6 FPGA和TMS320C6713 DSK

Solomon Saju, R. Rajan, A. Jayan
{"title":"音乐类型分类采用spatan6 FPGA和TMS320C6713 DSK","authors":"Solomon Saju, R. Rajan, A. Jayan","doi":"10.1109/CSPC.2017.8305838","DOIUrl":null,"url":null,"abstract":"Music genre classification is one of the most important element of the music information retrieval (MIR) community. In this paper, we present a music genre classification system using field programmable gate arrays (FPGA) and dedicated DSP processors. The proposed system uses FPGA based acoustic feature extraction of mel frequency cepstral coefficients (MFCC) and dynamic time warping (DTW) based classifier using TMS320C6713 floating point processor. We successfully implemented MFCC extraction algorithm on Spartan 6 FPGA clocked at 150 MHz with support from TMS320C6713 floating point processor followed by DTW based matching engine. The paper attempts to implement music genre classification algorithm in hardware, yielding competitive performance in music information retrieval applications.","PeriodicalId":123773,"journal":{"name":"2017 International Conference on Signal Processing and Communication (ICSPC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Music genre classification using spatan 6 FPGA and TMS320C6713 DSK\",\"authors\":\"Solomon Saju, R. Rajan, A. Jayan\",\"doi\":\"10.1109/CSPC.2017.8305838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Music genre classification is one of the most important element of the music information retrieval (MIR) community. In this paper, we present a music genre classification system using field programmable gate arrays (FPGA) and dedicated DSP processors. The proposed system uses FPGA based acoustic feature extraction of mel frequency cepstral coefficients (MFCC) and dynamic time warping (DTW) based classifier using TMS320C6713 floating point processor. We successfully implemented MFCC extraction algorithm on Spartan 6 FPGA clocked at 150 MHz with support from TMS320C6713 floating point processor followed by DTW based matching engine. The paper attempts to implement music genre classification algorithm in hardware, yielding competitive performance in music information retrieval applications.\",\"PeriodicalId\":123773,\"journal\":{\"name\":\"2017 International Conference on Signal Processing and Communication (ICSPC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Signal Processing and Communication (ICSPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPC.2017.8305838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Signal Processing and Communication (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPC.2017.8305838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

音乐类型分类是音乐信息检索(MIR)社区的重要组成部分之一。本文提出了一种基于现场可编程门阵列(FPGA)和专用DSP处理器的音乐类型分类系统。该系统采用基于FPGA的低频倒谱系数声学特征提取(MFCC)和基于TMS320C6713浮点处理器的动态时间规整(DTW)分类器。在TMS320C6713浮点处理器和基于DTW的匹配引擎的支持下,在时钟频率为150 MHz的Spartan 6 FPGA上成功实现了MFCC提取算法。本文尝试在硬件上实现音乐体裁分类算法,在音乐信息检索应用中具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Music genre classification using spatan 6 FPGA and TMS320C6713 DSK
Music genre classification is one of the most important element of the music information retrieval (MIR) community. In this paper, we present a music genre classification system using field programmable gate arrays (FPGA) and dedicated DSP processors. The proposed system uses FPGA based acoustic feature extraction of mel frequency cepstral coefficients (MFCC) and dynamic time warping (DTW) based classifier using TMS320C6713 floating point processor. We successfully implemented MFCC extraction algorithm on Spartan 6 FPGA clocked at 150 MHz with support from TMS320C6713 floating point processor followed by DTW based matching engine. The paper attempts to implement music genre classification algorithm in hardware, yielding competitive performance in music information retrieval applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信