用于量子图像分类的优越参数化量子电路设计

Shraddha Mishra, Chi-Yi Tsai
{"title":"用于量子图像分类的优越参数化量子电路设计","authors":"Shraddha Mishra, Chi-Yi Tsai","doi":"10.1109/ICCAE55086.2022.9762420","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel quantum neural network (QNN) algorithm enhanced with transfer learning to perform multi-class image classification. The proposed QNN extracts quantum image encoding measurements through the quantum state tomography framework and passes the sampled features through the classical neural network architecture to the proposed learnable parameterized quantum circuit (PQC) followed by gradient update via quantum backpropagation. We benchmark three different PQCs to demonstrate that our proposed algorithm outperforms similar classical CNN architecture in test accuracy on CIFAR10 and MNIST datasets. Present results more prominently establish the success of PQC designs which will be further used in the design of 2D quantum convolutional neural network (QCNN).","PeriodicalId":294641,"journal":{"name":"2022 14th International Conference on Computer and Automation Engineering (ICCAE)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design of Superior Parameterized Quantum Circuits for Quantum Image Classification\",\"authors\":\"Shraddha Mishra, Chi-Yi Tsai\",\"doi\":\"10.1109/ICCAE55086.2022.9762420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel quantum neural network (QNN) algorithm enhanced with transfer learning to perform multi-class image classification. The proposed QNN extracts quantum image encoding measurements through the quantum state tomography framework and passes the sampled features through the classical neural network architecture to the proposed learnable parameterized quantum circuit (PQC) followed by gradient update via quantum backpropagation. We benchmark three different PQCs to demonstrate that our proposed algorithm outperforms similar classical CNN architecture in test accuracy on CIFAR10 and MNIST datasets. Present results more prominently establish the success of PQC designs which will be further used in the design of 2D quantum convolutional neural network (QCNN).\",\"PeriodicalId\":294641,\"journal\":{\"name\":\"2022 14th International Conference on Computer and Automation Engineering (ICCAE)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Computer and Automation Engineering (ICCAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAE55086.2022.9762420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Computer and Automation Engineering (ICCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAE55086.2022.9762420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于迁移学习的量子神经网络算法来进行多类图像分类。提出的量子神经网络通过量子态层析框架提取量子图像编码测量值,并通过经典神经网络架构将采样特征传递给所提出的可学习参数化量子电路(PQC),然后通过量子反向传播进行梯度更新。我们对三种不同的pqc进行了基准测试,以证明我们提出的算法在CIFAR10和MNIST数据集上的测试精度优于类似的经典CNN架构。目前的研究结果更加突出地证明了PQC设计的成功,这将进一步应用于二维量子卷积神经网络(QCNN)的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Superior Parameterized Quantum Circuits for Quantum Image Classification
In this paper, we present a novel quantum neural network (QNN) algorithm enhanced with transfer learning to perform multi-class image classification. The proposed QNN extracts quantum image encoding measurements through the quantum state tomography framework and passes the sampled features through the classical neural network architecture to the proposed learnable parameterized quantum circuit (PQC) followed by gradient update via quantum backpropagation. We benchmark three different PQCs to demonstrate that our proposed algorithm outperforms similar classical CNN architecture in test accuracy on CIFAR10 and MNIST datasets. Present results more prominently establish the success of PQC designs which will be further used in the design of 2D quantum convolutional neural network (QCNN).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信