三元函数分类的谱算法

D. M. Miller, Mathias Soeken
{"title":"三元函数分类的谱算法","authors":"D. M. Miller, Mathias Soeken","doi":"10.1109/ISMVL.2018.00042","DOIUrl":null,"url":null,"abstract":"The spectral representation and classification of 2-valued and multiple-valued functions has been previously studied and found to be useful in logic design and testing for conventional circuits. Spectral techniques also have potential application for reversible and quantum circuits. This paper addresses the classification of ternary functions into spectral translation equivalence classes. An efficient algorithm is presented that determines the spectral translations to map a given function to the representative function for the equivalence class containing the given function. Using this algorithm we show that the 2-variable ternary functions partition into 11 equivalence classes. While the number of spectral equivalence classes for ternary functions with 3 or more variables is very large, prohibiting full enumeration, we determine a lower bound of 167,275 classes for 3 variables. The algorithm can be used for a significant number of variables to quickly determine if two functions fall within the same equivalence class and, if they do, to find a sequence of spectral translations to map one to the other. Generalization of the approach to higher radix functions is briefly discussed.","PeriodicalId":434323,"journal":{"name":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"385 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Spectral Algorithm for Ternary Function Classification\",\"authors\":\"D. M. Miller, Mathias Soeken\",\"doi\":\"10.1109/ISMVL.2018.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spectral representation and classification of 2-valued and multiple-valued functions has been previously studied and found to be useful in logic design and testing for conventional circuits. Spectral techniques also have potential application for reversible and quantum circuits. This paper addresses the classification of ternary functions into spectral translation equivalence classes. An efficient algorithm is presented that determines the spectral translations to map a given function to the representative function for the equivalence class containing the given function. Using this algorithm we show that the 2-variable ternary functions partition into 11 equivalence classes. While the number of spectral equivalence classes for ternary functions with 3 or more variables is very large, prohibiting full enumeration, we determine a lower bound of 167,275 classes for 3 variables. The algorithm can be used for a significant number of variables to quickly determine if two functions fall within the same equivalence class and, if they do, to find a sequence of spectral translations to map one to the other. Generalization of the approach to higher radix functions is briefly discussed.\",\"PeriodicalId\":434323,\"journal\":{\"name\":\"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"385 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2018.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2018.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

二值和多值函数的谱表示和分类在传统电路的逻辑设计和测试中已经得到了广泛的研究。光谱技术在可逆电路和量子电路中也有潜在的应用。本文讨论了三元函数在谱平移等价类中的分类。提出了一种确定谱平移的有效算法,将给定函数映射到包含该函数的等价类的代表函数。利用该算法,我们证明了二元三元函数可划分为11个等价类。虽然具有3个或更多变量的三元函数的谱等价类的数量非常大,禁止完全枚举,但我们确定了3变量的谱等价类的下界为167,275个。该算法可用于大量变量,以快速确定两个函数是否属于相同的等价类,如果是,则找到一个谱转换序列以将一个映射到另一个。简要讨论了该方法在高基数函数中的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Spectral Algorithm for Ternary Function Classification
The spectral representation and classification of 2-valued and multiple-valued functions has been previously studied and found to be useful in logic design and testing for conventional circuits. Spectral techniques also have potential application for reversible and quantum circuits. This paper addresses the classification of ternary functions into spectral translation equivalence classes. An efficient algorithm is presented that determines the spectral translations to map a given function to the representative function for the equivalence class containing the given function. Using this algorithm we show that the 2-variable ternary functions partition into 11 equivalence classes. While the number of spectral equivalence classes for ternary functions with 3 or more variables is very large, prohibiting full enumeration, we determine a lower bound of 167,275 classes for 3 variables. The algorithm can be used for a significant number of variables to quickly determine if two functions fall within the same equivalence class and, if they do, to find a sequence of spectral translations to map one to the other. Generalization of the approach to higher radix functions is briefly discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信